Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Brain Commun ; 3(4): fcab285, 2021.
Article in English | MEDLINE | ID: mdl-34939032

ABSTRACT

Animals suffering from uncontrollable stress sometimes show low effort to escape stress (learned helplessness). Changes in serotonin (5-hydroxytryptamine) signalling are thought to underlie this behaviour. Although the release of 5-hydroxytryptamine is triggered by the action potential firing of dorsal raphe nuclei 5-hydroxytryptamine neurons, the electrophysiological changes induced by uncontrollable stress are largely unclear. Herein, we examined electrophysiological differences among 5-hydroxytryptamine neurons in naïve rats, learned helplessness rats and rats resistant to inescapable stress (non-learned helplessness). Five-week-old male Sprague Dawley rats were exposed to inescapable foot shocks. After an avoidance test session, rats were classified as learned helplessness or non-learned helplessness. Activity-dependent 5-hydroxytryptamine release induced by the administration of high-potassium solution was slower in free-moving learned helplessness rats. Subthreshold electrophysiological properties of 5-hydroxytryptamine neurons were identical among the three rat groups, but the depolarization-induced spike firing was significantly attenuated in learned helplessness rats. To clarify the underlying mechanisms, potassium (K+) channels regulating the spike firing were initially examined using naïve rats. K+ channels sensitive to 500 µM tetraethylammonium caused rapid repolarization of the action potential and the small conductance calcium-activated K+ channels produced afterhyperpolarization. Additionally, dendrotoxin-I, a blocker of Kv1.1 (encoded by Kcna1), Kv1.2 (encoded by Kcna2) and Kv1.6 (encoded by Kcna6) voltage-dependent K+ channels, weakly enhanced the spike firing frequency during depolarizing current injections without changes in individual spike waveforms in naïve rats. We found that dendrotoxin-I significantly enhanced the spike firing of 5-hydroxytryptamine neurons in learned helplessness rats. Consequently, the difference in spike firing among the three rat groups was abolished in the presence of dendrotoxin-I. These results suggest that the upregulation of dendrotoxin-I-sensitive Kv1 channels underlies the firing attenuation of 5-hydroxytryptamine neurons in learned helplessness rats. We also found that the antidepressant ketamine facilitated the spike firing of 5-hydroxytryptamine neurons and abolished the firing difference between learned helplessness and non-learned helplessness by suppressing dendrotoxin-I-sensitive Kv1 channels. The dendrotoxin-I-sensitive Kv1 channel may be a potential target for developing drugs to control activity of 5-hydroxytryptamine neurons.

2.
Genes Brain Behav ; 18(7): e12520, 2019 09.
Article in English | MEDLINE | ID: mdl-30246290

ABSTRACT

Impaired fear memory extinction (Ext) is one of the hallmark symptoms of post-traumatic stress disorder (PTSD). However, since the precise mechanism of impaired Ext remains unknown, effective interventions have not yet been established. Recently, hippocampal-prefrontal brain-derived neurotrophic factor (BDNF) activity was shown to be crucial for Ext in naïve rats. We therefore examined whether decreased hippocampal-prefrontal BDNF activity is also involved in the Ext of rats subjected to a single prolonged stress (SPS) as a model of PTSD. BDNF levels were measured by enzyme-linked immunosorbent assay (ELISA), and phosphorylation of TrkB was measured by immunohistochemistry in the hippocampus and medial prefrontal cortex (mPFC) of SPS rats. We also examined whether BDNF infusion into the ventral mPFC or hippocampus alleviated the impaired Ext of SPS rats in the contextual fear conditioning paradigm. SPS significantly decreased the levels of BDNF in both the hippocampus and mPFC and TrkB phosphorylation in the ventral mPFC. Infusion of BDNF 24 hours after conditioning in the infralimbic cortex (ILC), but not the prelimbic cortex (PLC) nor hippocampus, alleviated the impairment of Ext. Since amelioration of impaired Ext by BDNF infusion did not occur without extinction training, it seems the two interventions must occur consecutively to alleviate impaired Ext. Additionally, BDNF infusion markedly increased TrkB phosphorylation in the ILC of SPS rats. These findings suggest that decreased BDNF signal transduction might be involved in the impaired Ext of SPS rats, and that activation of the BDNF-TrkB signal might be a novel therapeutic strategy for the impaired Ext by stress.


Subject(s)
Brain-Derived Neurotrophic Factor/therapeutic use , Extinction, Psychological , Physical Conditioning, Animal/methods , Stress Disorders, Post-Traumatic/therapy , Animals , Brain-Derived Neurotrophic Factor/metabolism , Fear , Hippocampus/metabolism , Limbic System/metabolism , Male , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Receptor, trkB/metabolism , Stress Disorders, Post-Traumatic/drug therapy
3.
J Psychiatr Res ; 53: 47-53, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24657235

ABSTRACT

We examined the utility of DNA methylation profiles at the CpG island of SLC6A4 (DMS) as a diagnostic biomarker for major depression (MD). In addition, the relationship between DMS and the serotonin transporter gene-linked polymorphic region (5-HTTLPR) allele, the severity of symptoms, number of early adversities, and therapeutic responses to antidepressants were examined. Genomic DNA was extracted from peripheral blood of Japanese healthy controls and patients with MD before and after treatment. DMS was analyzed using a MassARRAY Compact System. The severity of depression was evaluated using the Hamilton Rating Scale for Depression, and early adversity was evaluated using the Early Trauma Inventory. We were unable to distinguish between and healthy controls, or between unmedicated patients and medicated patients using DMS. The 5-HTTLPR allele had no significant effect on DMS. The methylation rates for several CpGs differed significantly after treatment. Notably, the methylation rate of CpG 3 in patients with better therapeutic responses was significantly higher than that in patients with poorer responses. Although further studies examining the function of specific CpG units of SLC6A4 are required, these results suggest that the pre-treatment methylation rate of SLC6A4 is associated with therapeutic responses to antidepressants in unmedicated patients with MD.


Subject(s)
Antidepressive Agents/therapeutic use , DNA Methylation/drug effects , Depressive Disorder, Major , Pharmacogenetics , Serotonin Plasma Membrane Transport Proteins/genetics , Adult , Case-Control Studies , CpG Islands/drug effects , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Female , Genotype , Humans , Male , Middle Aged , Psychiatric Status Rating Scales , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...