Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Microdevices ; 14(2): 279-89, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22076383

ABSTRACT

A device for acoustic particle manipulation in the 40 MHz range for continuous-flow operation in a 50 µm wide PDMS channel has been evaluated. Unidirectional interdigital transducers on a Y-cut Z-propagation lithium nixobate wafer were used to excite a surface acoustic wave that generated an acoustic standing wave inside the microfluidic channel. It was shown that particle alignment nodes with different inter-node spacing could be obtained, depending on device design and driving frequency. The observed inter-node spacing differed from the standard half-wavelength inter-node spacing generally employed in bulk acoustic transducer excited resonant systems. This effect and the related issue of acoustic node positions relative the channel walls, which is fundamental for most continuous flow particle manipulation operations in channels, was evaluated in measurements and simulations. Specific applications of particle separation and alignment where these systems can offer benefits relative state-of the art designs were identified.


Subject(s)
Acoustics/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Sound , Cell Survival , Equipment Design , Microfluidics , Transducers , Ultrasonics
2.
Sensors (Basel) ; 11(7): 6942-53, 2011.
Article in English | MEDLINE | ID: mdl-22163994

ABSTRACT

The mass sensitivity of thin aluminum nitride (AlN) film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO)-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented.

3.
Article in English | MEDLINE | ID: mdl-20040407

ABSTRACT

Improved performance thin-film plate acoustic wave resonators (FPAR) using the lowest order symmetric Lamb wave (S0) propagating in highly textured AlN membranes have been previously demonstrated for the first time. In this work, an experimental study of the resonators' performance vs. a variety of design parameters is performed. Devices operating in the vicinity of the stopband center exhibiting a Q-value of up to 3000 at a frequency of around 875 MHz are demonstrated. Further, low-loss high-Q micromachined 2-port longitudinally coupled thin-film resonators using the S0 mode are demonstrated for the first time. For the analysis of the proposed structures, the coupling-of-modes (COM) approach is successfully employed. Initially, the COM model is used for the extraction of physical parameters from one-port FPAR measurements. Subsequently, using the COM model, a satisfactory agreement with the proposed experimental frequency characteristics of S0 2-port FPARs has been achieved, and possibilities for further improvements in the performance discussed. Finally, the frequency spectrum of the one-port devices has been studied and the excited plate modes at different frequencies identified and presented with their Q-factors and temperature coefficients of frequency (TCF).


Subject(s)
Acoustics/instrumentation , Membranes, Artificial , Micro-Electrical-Mechanical Systems/instrumentation , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Miniaturization , Reproducibility of Results , Sensitivity and Specificity
4.
Article in English | MEDLINE | ID: mdl-17225803

ABSTRACT

Thin film integrated circuits compatible resonant structures using the lowest order symmetric Lamb wave propagating in thin aluminum nitride (AlN) film membranes have been studied. The 2-microm thick, highly coriented AlN piezoelectric films have been grown on silicon by pulsed, direct-current magnetron reactive sputter deposition. The films were deposited at room temperature and had typical full-width, half-maximum value of the rocking curve of about 2 degrees. Thin film plate acoustic resonators were designed and micromachined using low resolution photolithography and deep silicon etching. Plate waves, having a 12-microm wavelength, were excited by means of both interdigital (IDT) and longitudinal wave transducers using lateral field excitation (LW-LFE), and reflected by periodical aluminum-strip gratings deposited on top of the membrane. The existence of a frequency stopband and strong grating reflectivity have been theoretically predicted and experimentally observed. One-port resonator designs having varying cavity lengths and transducer topology were fabricated and characterized. A quality factor exceeding 3000 has been demonstrated at frequencies of about 885 MHz. The IDT based film plate acoustic resonators (FPAR) technology proved to be preferable when lower costs and higher Qs are pursued. The LW-LFE-based FPAR technology offers higher excitation efficiency at costs comparable to that of the thin film bulk acoustic wave resonator (FBAR) technology.


Subject(s)
Acoustics/instrumentation , Manufactured Materials , Membranes, Artificial , Microelectrodes , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Miniaturization/methods , Vibration
5.
Article in English | MEDLINE | ID: mdl-17091844

ABSTRACT

A method for the deposition of thin piezoelectric aluminum nitride (AlN) films with a nonzero c-axis mean tilt has been developed. The deposition is done in a standard reactive magnetron sputter deposition system without any hardware modifications. In essence, the method consists of a two-stage deposition process. The resulting film has a distinct tilted texture with the mean tilt of the c-axis varying roughly in the interval 28 to 32 degrees over the radius of the wafer excluding a small exclusion zone at the center of the latter. The mean tilt angle distribution over the wafer has a circular symmetry. A membrane-type shear mode thickness-excited thin film bulk acoustic resonator together with a micro-fluidic transport system has been subsequently fabricated using the two stage AlN deposition as well as standard bulk micro machining of Si. The resonator consisted of a 2-microm-thick AlN film with 200nm-thick Al top and bottom electrodes. The resonator was characterized with a network analyzer when operating in both air and water. The shear mode resonance frequency was about 1.6 GHz, the extracted device Q around 350, and the electromechanical coupling kt2 2% when the resonator was operated in air, whereas the latter two dropped down to 150 and 1.8%, respectively, when the resonator was operated in pure water.

6.
Article in English | MEDLINE | ID: mdl-16212256

ABSTRACT

Thin piezoelectric polycrystalline films such as AlN, ZnO, etc., are of great interest for the fabrication of thin film bulk/surface acoustic resonators (TFBARs or TFSARs). It is well-known that the degree of c-axis orientation of the thin films correlates directly with the electromechanical coupling. However, the degree of c-axis orientation of the piezoelectric film is, in turn, influenced by other parameters such as the structure of the substrate material, the matter of whether the c-axis is up or down (polarity), and the growth parameters used. The correlation of these three aspects with the electromechanical coupling of the AlN-thin films, is studied here. Thin AlN films, prepared in a magnetron sputtering system, have been deposited onto thin Al, Mo, Ni, Ti, and TiN films. Such thin high-conducting layers are used to form the bottom electrode of TFBAR devices as well as to define a short-circuiting plane in TFSAR devices. In both cases, they serve as a substrate for the growth of the piezoelectric film. It has been found that the degree of orientation and the surface roughness of the bottom metal layer significantly affects the texture of the AlN films, and hence its electroacoustic properties. For this reason, the surface morphology and texture of the metal layers and their influence on the growth of AlN on them has been systematically studied. Finally, FBARs with both Al and Ti electrodes have been fabricated and evaluated electroacoustically.

7.
Article in English | MEDLINE | ID: mdl-16212259

ABSTRACT

Thin film bulk acoustic wave resonators (FBAR) utilize thickness-excited modes in which the resonant frequency is determined by the thickness of the structure and the wave velocity of the mode used. Unfortunately, other resonant modes also may be excited in the device. Some of these correspond to low-frequency, laterally-excited modes and, although a relatively small amount of the total energy is absorbed by these modes, their harmonics may produce an undesirable response around the fundamental resonance frequency of the desired thickness mode. This work explores various ways of suppressing the spurious effects caused by lateral-excited modes by studying their dependence of the electrode geometry. The origin of the lateral-excited modes is discussed in detail, and the results from a number of different electrode geometries are compared. A new elliptical electrode shape for suppression of spurious modes is developed and demonstrated.

8.
Article in English | MEDLINE | ID: mdl-14682637

ABSTRACT

Highly c-axis oriented aluminum nitride (AlN) thin piezoelectric films have been grown on polycrystalline diamond substrates by pulsed direct current (DC) magnetron reactive sputter-deposition. The films were deposited at a substrate temperature below 50 degrees C (room temperature) and had a typical full width half maximum (FWHM) value of the rocking curve of the AlN-002-peak of 2.1 degrees. A variety of one-port surface acoustic wave (SAW) resonators have been designed and fabricated on top of the AlN films. The measurements indicate that various SAW modes are excited. The SAW phase velocities of up to 11.800 m/s have been measured. These results are in agreement with calculated dispersion curves of the AlN/diamond structure. Finally, the coupling of modes parameters have been extracted from S11 measurements using curve fitting for the first SAW mode, which indicate an effective coupling K2 of 0.91% and a Q factor of about 600 at a frequency of 1050 MHz.

SELECTION OF CITATIONS
SEARCH DETAIL
...