Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(1): e03296, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32051868

ABSTRACT

Impairment in glucose regulation is an indicatory effect capable of mediating multiple dysfunction such as cerebrovascular disorder with ischemia and brain damage inclusive. This study aims at investigating the glucose-lowering and neuroprotective capability of Diosgenin (DG) towards hyperglycemia-induced cerebral injury in a developed type 2 diabetes mellitus (T2DM) Zebrafish (ZF) model. T2DM was developed in ZF with 20 mg/kg body weight (b.w) multiple-low dose (MLD) Streptozotocin (STZ) for 28 days. Different doses of 20 mg/kg b.w (DG1) and 40 mg/kg b.w (DG2) DG was intraperitoneally administered twice in 7 days for a period of 28 days after T2DM was completely developed. Weight and behavioral changes were monitored and the catalytic activity including the plasma glucose level of diseased and treated ZF was spectrometrically estimated. Histopathological studies were employed to image the brain pathological condition during disease and treatment. SPSS was used as the statistical tool for result analysis and comparison of data obtained. STZ significantly (###p < 0.001) induced hyperglycemia when compared to control as plasma glucose increases from 101.56 ± 4.52 mgdL-1 to 175.87 ± 6.00 mg/dL. Our results have indicated a marked reduction in glucose concentration from a mean average of 175.87 ± 6.00 mgdL-1 to 105.68 ± 4.48 mgdL-1 and 82.06 ± 7.27 mgdL-1 in DG 1 and DG 2 respectively. Catalytic activity significantly decreases (p < 0.05) from 206.42 ± 30.77 unit/mL to 123.85 ± 29.99 unit/mL at a minimum and maximum value of 103.21 and 275.23 in diseased ZF respectively. On DG treatment, catalytic activity significantly (p < 0.01) rise from 101.58 ± 11.29 and 130.73 ± 27.52 to 130.98 ± 17.13 and 255.96 ± 30.34 with DG1 and DG2 treatment respectively. Studies on the behavioral pattern of STZ-induced anxiolytic effect on ZF confirmed changes in the number of transitions and time spent in both Novel tank test (NTT) and Dark/light test (LDT). Histopathological analysis confirmed the cerebral cortex with inflammatory brain cells in the diseased condition and an attenuation of damage posed revealed in diseased state was largely reversed with DG. As compared to the normal control, a significant ( # p < 0.05 and ### p < 0.001) changes in weight of fishes were recorded and DG1 and DG2 significantly promotes (***p < 0.001) body weight and improves the irregularities in weight of ZF during disease progression. Our study confirms that the potential of DG towards the management of hyperglycemia and hyperglycemia-mediated cerebral ischemic injury is through its blood glucose-lowering properties, anti-inflammatory activity, antioxidant effect, and anxiolytic capabilities.

2.
Anticancer Agents Med Chem ; 18(8): 1163-1176, 2018.
Article in English | MEDLINE | ID: mdl-29732980

ABSTRACT

BACKGROUND: The network interactions link human disease proteins to regulatory cellular pathways leading to better understanding of protein functions and cellular processes. Revealing the network of signaling pathways in cancer through protein-protein interactions at molecular level enhances our understanding of Hepatocellular Carcinoma (HCC). OBJECTIVE: A rodent model for study of HCC was developed to identify differentially expressed proteins at very early stage of cancer initiation and throughout its progression. METHODOLOGY: HCC was induced by administrating N-Nitrosodiethylamine (DEN) and 2-aminoacetylfluorine (2-AAF) to male Wistar rats. Proteomic approaches such as 2D-Electrophoresis, PD-Quest, MALDI-TOF-MS and Western blot analyses have been used to identify, characterize and validate the differentially expressed proteins in HCC-bearing animals vis-a-vis controls. RESULTS: The step-wise analysis of morphological and histological parameters revealed HCC induction and tumorigenesis at 1 and 4 months after carcinogen treatment, respectively. We report a novel protein network of 735 different proteins out of which eight proteins are characterized by MALDI-TOF-MS analysis soon after HCC was chemically induced in rats. We have analyzed four different novel routes representing the association of experimentally identified proteins with HCC progression. CONCLUSION: The study suggests that A-Raf, transthyretin and epidermal growth factor receptor play major role in HCC progression by regulating MAPK signaling pathway and lipid metabolism leading to continuous proliferation, neoplastic transformation and tumorigenesis.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Computational Biology , ErbB Receptors/metabolism , Liver Neoplasms/metabolism , Prealbumin/metabolism , Protein Interaction Maps , Proto-Oncogene Proteins A-raf/metabolism , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Diethylnitrosamine , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/analysis , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Male , Molecular Structure , Prealbumin/analysis , Proto-Oncogene Proteins A-raf/analysis , Rats, Wistar , Structure-Activity Relationship
3.
Pharmacogn Rev ; 10(19): 66-70, 2016.
Article in English | MEDLINE | ID: mdl-27041876

ABSTRACT

The liver is the most important organ that plays an important role in maintaining various physiological processes in the body. Hepatitis is an inflammation of the liver and is characterized by the presence of inflammatory cells in the tissue of the organ. There are five main viruses, referred to as types A, B, C, D, and E. These five types are of the greatest concern because of the burden of illness and death. Liver injury or liver dysfunction is a major health problem that challenges not only health care professionals but also the drug regulatory agencies and the pharmaceutical industry. Herbal medicines have been used in the treatment of liver disease for a long time. The immune system is the part of body that diagnoses the pathogen by using a specific receptor to reveal immediate response by the activation of immune components cells, chemokines, and cytokines, and also the release of the inflammatory mediator. They potentiate and modulate the immune system. The plant-derived phytoconstituents (polysaccharides, proteins and flavanoids, lignans, rotenoids, etc.) stimulate the immune system and maintained hepatic diseases. There are a number of hepatoprotective and immunomodulatory herbs that have been reported. The present review is aimed at compiling data on promising phytochemicals from hepatoprotective and immunomodulatory herbs.

4.
Aquat Toxicol ; 170: 297-309, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26372090

ABSTRACT

Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics.


Subject(s)
Neurons/metabolism , Proteomics , Zebrafish/physiology , Animals , Behavior, Animal/drug effects , Humans , Models, Animal , Neurons/drug effects , Psychotropic Drugs/toxicity , Toxicity Tests , Water Pollutants, Chemical/toxicity
5.
Pharmacogn Mag ; 11(42): 277-82, 2015.
Article in English | MEDLINE | ID: mdl-25829765

ABSTRACT

BACKGROUND: Phyllanthus maderaspatensis species (Euphorbiaceae) has been used in folk medicine of many countries as a remedy against several pathological conditions including jaundice and hepatitis. This study is an attempt to evaluate hepatoprotective activity of P. maderaspatensis against galactosamine-induced toxicity and also investigation of polyphenols in each extract. MATERIALS AND METHODS: The extraction of P. maderaspatensis as per Ayurveda was simultaneously standardized and quantified for biochemical markers viz., polyphenols: Kaempferol, quercetin, catechin, rutin, and ellagic acid by high-performance thin layer chromatography. Hepatotoxicity was induced albino adult rats by intraperitoneal injection of galactosamine (400 mg/kg). The quantified aqueous, hydroalcoholic and alcoholic extract of P. maderaspatensis (200 and 400 mg/kg body weight/day) were compared for evaluation of hepatoprotective potential, which were assessed in terms of reduction in histological damage, change in serum enzymes such as aspartate amino transaminase, alanine amino transaminase and alkaline phosphatase and increase thiobarbituric acid reactive substances. RESULTS AND DISCUSSION: The hydroalcoholic extract was found to contain comparatively high amount of kaempferol, quercetin, catechin, rutin, and ellagic acid which are responsible for hepatoprotection. Antioxidant parameters such as glutathione, catalase, and superoxide dismutase activity in liver tissues were restored toward the normalization more significantly by the hydroalcoholic extract when compared with other extracts. The biochemical observations were supplemented with histopathological examination. CONCLUSION: The hydroalcoholic extract standardized with respect to known biomarkers may be considered as a potent extract against hepatotoxicity.

6.
Phytochem Anal ; 26(4): 237-46, 2015.
Article in English | MEDLINE | ID: mdl-25676726

ABSTRACT

INTRODUCTION: Ocimum sanctum Linn (Sanskrit: Tulasi; family: Libiaceae), popularly known as holy basil or Ocimum teinufolium, is found throughout the semitropical and tropical parts of India. In Ayurveda, Tulasi has been well known for its therapeutic potentials. OBJECTIVE: To optimise and develop a standard method to quantify seven polyphenols simultaneously by HPTLC. METHODS: A three-level factor Box-Behnken statistical design was used for optimisation, where extraction time (min), temperature (°C) and methanol:water ratio (% v/v) are the independent variables with polyphenols as the dependent variable. The separation was archived on a silica-gel 60 F254 HPTLC plate using toluene:ethyl acetate:formic acid:methanol (3:3:0.8:0.2 v/v) as the mobile phase. Densitometric analysis of polyphenols was carried out in the absorbance mode at 366 nm. RESULTS: The quantification of polyphenols was carried out based on peak area with a linear calibration curve at concentration ranges of 60-240, 20-200, 100-1600, 40-200, 200-1400, 10-160, 200-1400, 100-5000 ng/band for caffeic acid, ellagic acid, rutin, kaempferol, catechin, quercetin, eupalitin and epicatechin respectively. The method was validated for peak purity, precision, accuracy, limit of detection (LOD) and quantification (LOQ). Method specificity was confirmed using the retention factor value and visible spectra correlation of marker compounds. CONCLUSIONS: A validated HPTLC method was newly developed for simultaneous quantification of seven polyphenols in an Ayurvedic preparation of O. sanctum. The proposed method is simple, precise, specific, accurate, cost-effective, less time consuming and has the ability to separate the polyphenols from other constituents.


Subject(s)
Chromatography, Thin Layer/methods , Densitometry/methods , Ocimum/chemistry , Polyphenols/analysis , Calibration , Chromatography, Thin Layer/standards , Densitometry/standards , Limit of Detection , Sensitivity and Specificity
7.
Chem Biol Interact ; 204(2): 125-34, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23692979

ABSTRACT

Lung cancer is one of the commonest cancers detected worldwide with a high mortality rate. The responsible factors affecting survival include delayed prognosis, and lack of effective treatments. To help improve the disease management, there is a need for better screening and development of specific markers that help in the early diagnosis. Analysis of differentially expressed proteins in cancer cells in comparison to their normal counterparts using proteome profiling revealed identification of new biomarkers as therapeutic targets. Therefore, an animal model for lung cancer was developed and monitored by histopathological evaluation. Lung tissue proteins were isolated, solubilized and resolved on 2D gel electrophoresis using broad pH range IPG strips (pH 3-10). Liquid chromatography and mass spectrometry (LC-MS/MS) revealed 66 proteins to be differentially expressed in cancer tissue as compared to normal. The study identified and characterized three of these proteins, namely peroxiredoxin-6, ß-actin and collagen α-1 (VI) as potentially prospective biomarkers for early detection of lung cancer.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/pathology , Nitrosamines/pharmacology , Proteomics , Animals , Blotting, Western , Carcinogens/pharmacology , Chromatography, Liquid , Lung Neoplasms/metabolism , Lung Neoplasms/ultrastructure , Male , Mass Spectrometry , Peroxiredoxin VI/metabolism , Protein Array Analysis , Rats , Rats, Wistar , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...