Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz Dent J ; 17(3): 208-12, 2006.
Article in English | MEDLINE | ID: mdl-17262126

ABSTRACT

The extracellular matrix (ECM) performs a very important role in growth regulation and tissue differentiation and organization. In view of this, the purpose of this study was to analyze the collagen, the major organic component of dental pulp ECM, in papillae of human tooth germs in different developmental phases. The maxillas and mandibles of 9 human fetuses ranging from 10 to 22 weeks of intrauterine life were removed and 16 tooth germs (1 in the cap stage, 8 in the early bell stage and 7 in the late bell stage) were obtained. The pieces were processed for histological analysis and stained with hematoxylin-eosin, Masson's Trichrome and picrosirius staining technique. Both types of collagen in the dental papilla were only detected by the picrosirius staining technique under polarized light microscopy. Type III collagen was detected in all specimens. Type I collagen was present in focal areas of the dental papilla only in some specimens. In conclusion, the findings of this study showed that type III collagen is a regular component of the papillae of human tooth germs whereas type I collagen is present in a significantly lesser amount.


Subject(s)
Collagen/analysis , Dental Papilla/ultrastructure , Azo Compounds , Collagen Type I/analysis , Collagen Type III/analysis , Coloring Agents , Dental Papilla/chemistry , Dental Pulp/embryology , Extracellular Matrix/ultrastructure , Fetus , Gestational Age , Humans , Odontogenesis/physiology , Tooth Germ/chemistry , Tooth Germ/ultrastructure
2.
Braz. dent. j ; 17(3): 208-212, 2006. ilus
Article in English | LILACS | ID: lil-442368

ABSTRACT

The extracellular matrix (ECM) performs a very important role in growth regulation and tissue differentiation and organization. In view of this, the purpose of this study was to analyze the collagen, the major organic component of dental pulp ECM, in papillae of human tooth germs in different developmental phases. The maxillas and mandibles of 9 human fetuses ranging from 10 to 22 weeks of intrauterine life were removed and 16 tooth germs (1 in the cap stage, 8 in the early bell stage and 7 in the late bell stage) were obtained. The pieces were processed for histological analysis and stained with hematoxylin-eosin, Masson's Trichrome and picrosirius staining technique. Both types of collagen in the dental papilla were only detected by the picrosirius staining technique under polarized light microscopy. Type III collagen was detected in all specimens. Type I collagen was present in focal areas of the dental papilla only in some specimens. In conclusion, the findings of this study showed that type III collagen is a regular component of the papillae of human tooth germs whereas type I collagen is present in a significantly lesser amount.


A matriz extracelular (MEC) tem um papel importante na regulação do crescimento e na diferenciação e organização dos tecidos. Com base nestes aspectos o objetivo do deste estudo foi analisar o colágeno, maior componente orgânico da MEC da polpa dentária, na papila de germes dentários humanos, em diferentes fases do desenvolvimento. Foram obtidos fragmentos de maxilas e mandíbulas de 9 fetos humanos com 10 a 22 semanas de vida intra-uterina, dos quais foram analisados 16 germes dentários (1 em estágio de capuz, 8 em estágio de campânula precoce e 7 em estágio de campânula tardia). Secções histológicas seriadas foram coradas com hematoxilina e eosina, tricrômico de Masson e técnica de coloração do picrosirius. Ambos os tipos de colágeno na papila dentária foram somente detectados pela técnica de coloração do picrosirius usando microscopia de luz polarizada. Colágeno tipo III foi detectado em todas as amostras. Colágeno tipo I estava presente em áreas focais da papila dental em algumas amostras. Concluiu-se que o colágeno tipo III mostrou-se um componente regular da papila de germes dentários humanos, enquanto o colágeno tipo I esteve presente em quantidade significativamente menor.


Subject(s)
Humans , Collagen/analysis , Dental Papilla/ultrastructure , Azo Compounds , Collagen Type I/analysis , Collagen Type III/analysis , Coloring Agents , Dental Papilla/chemistry , Dental Pulp/embryology , Extracellular Matrix/ultrastructure , Fetus , Gestational Age , Odontogenesis/physiology , Tooth Germ/chemistry , Tooth Germ/ultrastructure
3.
Dent Traumatol ; 21(6): 329-35, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16262618

ABSTRACT

The use of alendronate, a bisphosphonate which is able to inhibit bone resorption, in order to prevent dental root resorption after tooth replantation would be of clinical relevance. However, this drug must be biocompatible to the periapical tissues. The aim of this study was to analyze the effect of an alendronate paste in polyethyleneglycol (2 g ml(-1)) on endothelial cells in culture (in vitro) and on rat subcutaneous tissue (in vivo). For the in vitro study the paste was applied on round glass coverslips that were immersed into confluent cell cultures (clone Cips). The cell viability percentages of these cultures were obtained 0, 6 and 12 h after contact with the substance. As control, cultures that received plain coverslips were used. This analysis was carried out in triplicate using the Trypan blue dye exclusion assay. For the in vivo study the paste was introduced into polyethylene tubes that were placed into the rat subcutaneous tissue. The rats were killed 7 and 14 days later; then, the tissue sections stained with hematoxylin-eosin were analyzed. In vitro, the alendronate caused a significant decrease in the cell viability in 6 h (P < 0.05) and 12 h (P < 0.01), when compared with the control cultures. In vivo the tissue response was exuberant and similar at the two experimental times. There was a necrosis in a comprehensive area in contact with the open end of the tube. Presence of micro-abscesses and intense inflammatory infiltrate in the hypoderm permeating the muscle fibers and fat lobules were observed. In conclusion, the alendronate paste in polyethylene glycol as used showed to be highly cytotoxic in vitro as well as in vivo.


Subject(s)
Alendronate/adverse effects , Bone Density Conservation Agents/adverse effects , Endothelial Cells/drug effects , Subcutaneous Tissue/drug effects , Animals , Pilot Projects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...