Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 233(1-2): 157-63, 2008.
Article in English | MEDLINE | ID: mdl-18648733

ABSTRACT

Mulberry tree leaves were shown to have mucilaginous polysaccharides. The extracted water-soluble mucilage was separated into three fractions via a cetylpyridinum chloride complex and purified by anion-exchange chromatography. Five acidic polysaccharides were separated from these fractions, one of which was a major polysaccharide (Mp-3) that was structurally analyzed and used for antibody preparation. The Mp-3 polysaccharide contained rhamnose, galactose, glucose, galacturonic acid, and glucuronic acid in a molar ratio of 1 : 0.2 : 0.5 : 2.3 : 1.5 as constituent monosaccharides. Methylation and gas chromatography-mass spectrometry analysis indicated that the polysaccharide was a rhamnogalacturonan mainly consisting of 1,2,3-linked rhamnose residues, 1,3,4- and 1,4-linked uronic acid residues, and terminal uronic acid residues. Its molecular weight was estimated to be 5.5 x 10(5). Immunohistological observation revealed that the Mp-3 polysaccharide is specifically localized in inner epidermal cells situated in adaxial leaves, and electron microscopy showed that its subcellular location is between the plasma membrane and the cell wall. In young leaves, numerous secretory vesicles were present in a shrunken cytoplasm that was surrounded by fibers. In mature leaves, more than 20% of total epidermal cells were these inner cells in which polysaccharide deposition was significantly increased. The deposits appeared as a rounded electron-dense mass throughout the inner cells by electron microscopy.


Subject(s)
Adhesives/metabolism , Morus/metabolism , Plant Leaves/metabolism , Polysaccharides/metabolism , Biological Transport , Chromatography, Ion Exchange , Hydrolysis , Methylation , Morus/cytology , Morus/ultrastructure , Plant Leaves/cytology , Plant Leaves/ultrastructure , Polysaccharides/ultrastructure
2.
J Plant Res ; 121(2): 201-5, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18217196

ABSTRACT

A peculiar inward growth, named a "cell wall sac", formed in mulberry (Morus alba) idioblasts, is a subcellular site for production of calcium carbonate crystals. On the basis of ultrastructural observations, a fully expanded cell wall sac could be divided into two parts-an amorphous complex consisting of multi-layered compartments with multiple fibers originating from the innermost cell wall layer, and a peripheral plain matrix with fiber aggregates. Immunofluorescent localization showed that low and highly esterified pectin epitopes were detected at the early stages of development of the cell wall sac, followed by complete disappearance from the both parts of fully enlarged mature sac. In contrast, the xyloglucan epitope remained in the compartment complex; this was supported by the observation that the xyloglucan epitope labeled with immuno-gold particles is found on fibers in the complex part.


Subject(s)
Cell Wall/ultrastructure , Glucans/metabolism , Morus/ultrastructure , Pectins/metabolism , Plant Epidermis/ultrastructure , Xylans/metabolism , Cell Wall/metabolism , Epitopes/metabolism , Immunohistochemistry , Morus/metabolism , Plant Epidermis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...