Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(7): e17668, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483748

ABSTRACT

The goal of this research is to investigate the effects of Ohmic heating, heat generation, and viscous dissipative flow on magneto (MHD) boundary-layer heat transmission flowing of Jeffrey nanofluid across a stretchable surface using the Koo-Kleinstreuer-Li (KKL) model. Engine oil serves as the primary fluid and is suspended with copper oxide nanomolecules. The governing equations that regulate the flowing and heat transmission fields are partial-differential equations (PDEs) that are then converted to a model of non-linear ordinary differential equations (ODEs) via similarity transformation. The resultant ODEs are numerically resolved using a Keller box technique via MATLAB software that is suggested. Diagrams and tables are used to express the effects of various normal liquids, nanomolecule sizes, magneto parameters, Prandtl, Deborah, and Eckert numbers on the velocity field and temperature field. The outcomes display that the copper oxide-engine oil nanofluid has a lower velocity, drag force, and Nusselt number than the plain liquid, although the introduction of nanoparticles raises the heat. The heat transference rate is reduced by Eckert number, size of nanomolecules, and magneto parameter rising. Whilst, Deborah number is shown to enhance both the drag-force factor and the heat transfer rate. Furthermore, the discoveries reported are advantageous to upgrading incandescent lighting bulbs, heating, and cooling equipment, filament-generating light, energy generation, multiple heating devices, and other similar devices.

2.
Heliyon ; 9(7): e17756, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449188

ABSTRACT

Vortices capture the attention of every scientist (as soon as they come into existence) while studying any flow problem because of their significance in comprehending fluid mixing and mass transport processes. A vortex is indeed a physical phenomenon that happens when a liquid or a gas flow in a circular motion. They are generated due to the velocity difference and may be seen in hurricanes, air moving across the plane wing, tornadoes, etc. The study of vortices is important for understanding various natural phenomena in different settings. This work explores the complex dynamics of the Lorentz force that drives the rotation of nanostructures and the emergence of intricate vortex patterns in a hybrid fluid with Fe3O4-Cu nanoparticles. The hybrid nanofluid is modeled as a single-phase fluid, and the partial differential equations (PDEs) that govern its behavior are solved numerically. This work also introduces a novel analysis that enables us to visualize the flow lines and isotherms around the magnetic strips in the flow domain. The Lorentz force confined to the strips causes the spinning of hybrid nanoparticles, resulting in complex vortex structures in the flow domain. The results indicate that the magnetic field lowers the Nusselt number by 34% while raising the skin friction by 9%. The Reynolds number amplifies the influence of the localized magnetic field on the flow dynamics. Lastly, the nano-scaled structures in the flow enhance the Nusselt number significantly while having a minor effect on the skin friction factor.

SELECTION OF CITATIONS
SEARCH DETAIL
...