Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3592, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351145

ABSTRACT

Quantum algorithms provide an exponential speedup for solving certain classes of linear systems, including those that model geologic fracture flow. However, this revolutionary gain in efficiency does not come without difficulty. Quantum algorithms require that problems satisfy not only algorithm-specific constraints, but also application-specific ones. Otherwise, the quantum advantage carefully attained through algorithmic ingenuity can be entirely negated. Previous work addressing quantum algorithms for geologic fracture flow has illustrated core algorithmic approaches while incrementally removing assumptions. This work addresses two further requirements for solving geologic fracture flow systems with quantum algorithms: efficient system state preparation and efficient information extraction. Our approach to addressing each is consistent with an overall exponential speed-up.

2.
Nat Chem Biol ; 18(9): 934-941, 2022 09.
Article in English | MEDLINE | ID: mdl-35590003

ABSTRACT

The expansion of the target landscape of covalent inhibitors requires the engagement of nucleophiles beyond cysteine. Although the conserved catalytic lysine in protein kinases is an attractive candidate for a covalent approach, selectivity remains an obvious challenge. Moreover, few covalent inhibitors have been shown to engage the kinase catalytic lysine in animals. We hypothesized that reversible, lysine-targeted inhibitors could provide sustained kinase engagement in vivo, with selectivity driven in part by differences in residence time. By strategically linking benzaldehydes to a promiscuous kinase binding scaffold, we developed chemoproteomic probes that reversibly and covalently engage >200 protein kinases in cells and mice. Probe-kinase residence time was dramatically enhanced by a hydroxyl group ortho to the aldehyde. Remarkably, only a few kinases, including Aurora A, showed sustained, quasi-irreversible occupancy in vivo, the structural basis for which was revealed by X-ray crystallography. We anticipate broad application of salicylaldehyde-based probes to proteins that lack a druggable cysteine.


Subject(s)
Lysine , Protein Kinase Inhibitors , Animals , Cysteine/metabolism , Lysine/metabolism , Mice , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism
3.
J Med Chem ; 64(1): 644-661, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33356246

ABSTRACT

The phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway is a frequently dysregulated pathway in human cancer, and PI3Kα is one of the most frequently mutated kinases in human cancer. A PI3Kα-selective inhibitor may provide the opportunity to spare patients the side effects associated with broader inhibition of the class I PI3K family. Here, we describe our efforts to discover a PI3Kα-selective inhibitor by applying structure-based drug design (SBDD) and computational analysis. A novel series of compounds, exemplified by 2,2-difluoroethyl (3S)-3-{[2'-amino-5-fluoro-2-(morpholin-4-yl)-4,5'-bipyrimidin-6-yl]amino}-3-(hydroxymethyl)pyrrolidine-1-carboxylate (1) (PF-06843195), with high PI3Kα potency and unique PI3K isoform and mTOR selectivity were discovered. We describe here the details of the design and synthesis program that lead to the discovery of 1.


Subject(s)
Drug Design , Phosphatidylinositol 3-Kinases/drug effects , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Animals , Cell Line , Chromatography, High Pressure Liquid/methods , Crystallography, X-Ray , Humans , Hydrogen Bonding , Magnetic Resonance Spectroscopy/methods , Mice , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Rats , Spectrometry, Mass, Electrospray Ionization/methods
4.
Cell Chem Biol ; 24(11): 1388-1400.e7, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28965727

ABSTRACT

Patients with non-small cell lung cancers that have kinase-activating epidermal growth factor receptor (EGFR) mutations are highly responsive to first- and second-generation EGFR inhibitors. However, these patients often relapse due to a secondary, drug-resistant mutation in EGFR whereby the gatekeeper threonine is converted to methionine (T790M). Several third-generation EGFR inhibitors have been developed that irreversibly inactivate T790M-EGFR while sparing wild-type EGFR, thus reducing epithelium-based toxicities. Using chemical proteomics, we show here that individual T790M-EGFR inhibitors exhibit strikingly distinct off-target profiles in human cells. The FDA-approved drug osimertinib (AZD9291), in particular, was found to covalently modify cathepsins in cell and animal models, which correlated with lysosomal accumulation of the drug. Our findings thus show how chemical proteomics can be used to differentiate covalent kinase inhibitors based on global selectivity profiles in living systems and identify specific off-targets of these inhibitors that may affect drug activity and safety.


Subject(s)
ErbB Receptors/metabolism , Protein Kinase Inhibitors/chemistry , Proteome/analysis , 5'-Nucleotidase/chemistry , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Acrylamides , Aniline Compounds , Animals , Cathepsins/chemistry , Cathepsins/metabolism , Cell Line, Tumor , Checkpoint Kinase 2/chemistry , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , Cysteine/chemistry , ErbB Receptors/genetics , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , HEK293 Cells , Humans , Liver/metabolism , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Piperazines/chemistry , Piperazines/metabolism , Protein Kinase Inhibitors/metabolism , Proteomics , Rhodamines/chemistry , Transplantation, Heterologous
5.
J Med Chem ; 60(7): 3002-3019, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28287730

ABSTRACT

Mutant epidermal growth factor receptor (EGFR) is a major driver of non-small-cell lung cancer (NSCLC). Marketed first generation inhibitors, such as erlotinib, effect a transient beneficial response in EGFR mutant NSCLC patients before resistance mechanisms render these inhibitors ineffective. Secondary oncogenic EGFR mutations account for approximately 50% of relapses, the most common being the gatekeeper T790M substitution that renders existing therapies ineffective. The discovery of PF-06459988 (1), an irreversible pyrrolopyrimidine inhibitor of EGFR T790M mutants, was recently disclosed.1 Herein, we describe our continued efforts to achieve potency across EGFR oncogenic mutations and improved kinome selectivity, resulting in the discovery of clinical candidate PF-06747775 (21), which provides potent EGFR activity against the four common mutants (exon 19 deletion (Del), L858R, and double mutants T790M/L858R and T790M/Del), selectivity over wild-type EGFR, and desirable ADME properties. Compound 21 is currently being evaluated in phase-I clinical trials of mutant EGFR driven NSCLC.


Subject(s)
Drug Design , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Acrylamides/chemistry , Acrylamides/pharmacokinetics , Acrylamides/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Dogs , Halogenation , Humans , Lung/drug effects , Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Models, Molecular , Molecular Docking Simulation , Mutation , Protein Kinase Inhibitors/pharmacokinetics , Pyrrolidines/pharmacokinetics , Rats
6.
J Am Chem Soc ; 139(2): 680-685, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28051857

ABSTRACT

Protein kinases comprise a large family of structurally related enzymes. A major goal in kinase-inhibitor development is to selectively engage the desired kinase while avoiding myriad off-target kinases. However, quantifying inhibitor interactions with multiple endogenous kinases in live cells remains an unmet challenge. Here, we report the design of sulfonyl fluoride probes that covalently label a broad swath of the intracellular kinome with high efficiency. Protein crystallography and mass spectrometry confirmed a chemoselective reaction between the sulfonyl fluoride and a conserved lysine in the ATP binding site. Optimized probe 2 (XO44) covalently modified up to 133 endogenous kinases, efficiently competing with high intracellular concentrations of ATP. We employed probe 2 and label-free mass spectrometry to quantify intracellular kinase engagement by the approved drug, dasatinib. The data revealed saturable dasatinib binding to a small subset of kinase targets at clinically relevant concentrations, highlighting the utility of lysine-targeted sulfonyl fluoride probes in demanding chemoproteomic applications.


Subject(s)
Models, Biological , Molecular Probes/chemistry , Protein Kinases/chemistry , Sulfinic Acids/chemistry , Adenosine Triphosphate/chemistry , Binding Sites , Cells, Cultured , Dasatinib/chemistry , Dasatinib/pharmacology , Drug Delivery Systems , Lysine/chemistry , Mass Spectrometry , Molecular Structure
7.
Chembiochem ; 17(20): 1925-1930, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27504718

ABSTRACT

Sulfonyl fluoride (SF)-based activity probes have become important tools in chemical biology. Herein, exploiting the relative chemical stability of SF to carry out a number of unprecedented SF-sparing functional group manipulations, we report the chemoselective synthesis of a toolbox of highly functionalized aryl SF monomers that we used to quickly prepare SF chemical biology probes. In addition to SF, the monomers bear an embedded click handle (a terminal alkyne that can perform copper(I)-mediated azide-alkyne cycloaddition). The monomers can be used either as fragments to prepare clickable SF analogues of drugs (biologically active compounds) bearing an aryl ring or, alternatively, attached to drugs as minimalist clickable aryl SF substituents.


Subject(s)
Molecular Probes/chemical synthesis , Sulfinic Acids/chemical synthesis , Click Chemistry , Models, Molecular , Molecular Probes/chemistry , Molecular Structure , Sulfinic Acids/chemistry
8.
Nat Chem Biol ; 10(9): 760-767, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25038787

ABSTRACT

Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Proteome/genetics , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Cell Line, Tumor , Cell Survival/drug effects , Cysteine/chemistry , Genes, erbB-1/genetics , Humans , Kinetics , Piperidines , Protein Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
9.
J Med Chem ; 57(11): 4720-44, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24819116

ABSTRACT

Although crizotinib demonstrates robust efficacy in anaplastic lymphoma kinase (ALK)-positive non-small-cell lung carcinoma patients, progression during treatment eventually develops. Resistant patient samples revealed a variety of point mutations in the kinase domain of ALK, including the L1196M gatekeeper mutation. In addition, some patients progress due to cancer metastasis in the brain. Using structure-based drug design, lipophilic efficiency, and physical-property-based optimization, highly potent macrocyclic ALK inhibitors were prepared with good absorption, distribution, metabolism, and excretion (ADME), low propensity for p-glycoprotein 1-mediated efflux, and good passive permeability. These structurally unusual macrocyclic inhibitors were potent against wild-type ALK and clinically reported ALK kinase domain mutations. Significant synthetic challenges were overcome, utilizing novel transformations to enable the use of these macrocycles in drug discovery paradigms. This work led to the discovery of 8k (PF-06463922), combining broad-spectrum potency, central nervous system ADME, and a high degree of kinase selectivity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Brain/metabolism , Lactams, Macrocyclic/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Aminopyridines , Anaplastic Lymphoma Kinase , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Crystallography, X-Ray , Drug Resistance, Neoplasm , Humans , Lactams , Lactams, Macrocyclic/pharmacokinetics , Lactams, Macrocyclic/pharmacology , Mice , Microsomes, Liver/metabolism , Models, Molecular , Mutation , NIH 3T3 Cells , Pyrazoles , Rats , Receptor Protein-Tyrosine Kinases/genetics , Stereoisomerism , Structure-Activity Relationship
10.
Proc Natl Acad Sci U S A ; 111(1): 173-8, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24347635

ABSTRACT

Covalent inhibition is a reemerging paradigm in kinase drug design, but the roles of inhibitor binding affinity and chemical reactivity in overall potency are not well-understood. To characterize the underlying molecular processes at a microscopic level and determine the appropriate kinetic constants, specialized experimental design and advanced numerical integration of differential equations are developed. Previously uncharacterized investigational covalent drugs reported here are shown to be extremely effective epidermal growth factor receptor (EGFR) inhibitors (kinact/Ki in the range 10(5)-10(7) M(-1)s(-1)), despite their low specific reactivity (kinact ≤ 2.1 × 10(-3) s(-1)), which is compensated for by high binding affinities (Ki < 1 nM). For inhibitors relying on reactivity to achieve potency, noncovalent enzyme-inhibitor complex partitioning between inhibitor dissociation and bond formation is central. Interestingly, reversible binding affinity of EGFR covalent inhibitors is highly correlated with antitumor cell potency. Furthermore, cellular potency for a subset of covalent inhibitors can be accounted for solely through reversible interactions. One reversible interaction is between EGFR-Cys797 nucleophile and the inhibitor's reactive group, which may also contribute to drug resistance. Because covalent inhibitors target a cysteine residue, the effects of its oxidation on enzyme catalysis and inhibitor pharmacology are characterized. Oxidation of the EGFR cysteine nucleophile does not alter catalysis but has widely varied effects on inhibitor potency depending on the EGFR context (e.g., oncogenic mutations), type of oxidation (sulfinylation or glutathiolation), and inhibitor architecture. These methods, parameters, and insights provide a rational framework for assessing and designing effective covalent inhibitors.


Subject(s)
Drug Resistance , Enzyme Inhibitors/chemical synthesis , ErbB Receptors/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Catalysis , Cell Line, Tumor , Chemistry, Pharmaceutical , Cysteine/chemistry , Drug Design , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , ErbB Receptors/chemistry , Humans , Inhibitory Concentration 50 , Mass Spectrometry , Oxygen/chemistry , Phosphorylation , Protein Binding , Protein Conformation , Quinazolines/chemistry , Signal Transduction
11.
Structure ; 21(2): 209-19, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23273428

ABSTRACT

The oncogenicity of the L858R mutant form of the epidermal growth factor receptor (EGFR) in non-small-cell lung cancer is thought to be due to the constitutive activation of its kinase domain. The selectivity of the marketed drugs gefitinib and erlotinib for L858R mutant is attributed to their specific recognition of the active kinase and to weaker ATP binding by L858R EGFR. We present crystal structures showing that neither L858R nor the drug-resistant L858R+T790M EGFR kinase domain is in the constitutively active conformation. Additional co-crystal structures show that gefitinib and dacomitinib, an irreversible anilinoquinazoline derivative currently in clinical development, may not be conformation specific for the active state of the enzyme. Structural data further reveal the potential mode of recognition of one of the autophosphorylation sites in the C-terminal tail, Tyr-1016, by the kinase domain. Biochemical and biophysical evidence suggest that the oncogenic mutations impact the conformational dynamics of the enzyme.


Subject(s)
Antineoplastic Agents/chemistry , ErbB Receptors/chemistry , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Catalytic Domain , ErbB Receptors/genetics , Erlotinib Hydrochloride , Gefitinib , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Models, Molecular , Mutation, Missense , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein Stability , Protein Structure, Secondary , Quinazolines/chemistry , Quinazolinones/chemistry , Sf9 Cells , Spodoptera
12.
J Med Chem ; 54(24): 8490-500, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22040023

ABSTRACT

Analogues substituted with various amines at the 6-position of the pyrazine ring on (4-amino-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)pyrazin-2-ylmethanone were discovered as potent and selective inhibitors of PDK1 with potential as anticancer agents. An early lead with 2-pyridine-3-ylethylamine as the pyrazine substituent showed moderate potency and selectivity. Structure-based drug design led to improved potency and selectivity against PI3Kα through a combination of cyclizing the ethylene spacer into a saturated, five-membered ring and substituting on the 4-position of the aryl ring with a fluorine. ADME properties were improved by lowering the lipophilicity with heteroatom replacements in the saturated, five-membered ring. The optimized analogues have a PDK1 Ki of 1 nM and >100-fold selectivity against PI3K/AKT-pathway kinases. The cellular potency of these analogues was assessed by the inhibition of AKT phosphorylation (T308) and by their antiproliferation activity against a number of tumor cell lines.


Subject(s)
Antineoplastic Agents/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/chemical synthesis , Pyrroles/chemical synthesis , 3-Phosphoinositide-Dependent Protein Kinases , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Ethylamines/chemical synthesis , Ethylamines/chemistry , Ethylamines/pharmacology , Humans , Models, Molecular , Phosphorylation , Protein Conformation , Proto-Oncogene Proteins c-akt/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Signal Transduction , Structure-Activity Relationship
13.
J Comput Aided Mol Des ; 25(7): 689-98, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21779981

ABSTRACT

Phosphoinositide-dependent kinase-1 (PDK1) is a critical enzyme in the PI3K/AKT pathway and to the activation of AGC family protein kinases, including S6K, SGK, and PKC. Dysregulation of this pathway plays a key role in cancer cell growth, survival and tumor angiogenesis. As such, inhibitors of PDK1 offer the promise of a new therapeutic modality for cancer treatment. Fragment based drug screening has recently become a viable entry point for hit identification. In this work, NMR spectroscopy fragment screening of PDK1 afforded novel chemotypes as orthogonal starting points from HTS screening hits. Compounds identified as hits by NMR spectroscopy were tested in a biochemical assay, and fragments with activity in both assays were clustered. The Pfizer compound file was mined via substructure and 2D similarity search, and the chemotypes were prioritized by ligand efficiency (LE), SAR mining, chemical attractiveness, and chemical enablement of promising vectors. From this effort, an isoquinolone fragment hit, 5 (IC(50) 870 µM, LE = 0.39), was identified as a novel, ligand efficient inhibitor of PDK1 and a suitable scaffold for further optimization. Initially in the absence of crystallographic data, a fragment growing approach efficiently explored four vectors of the isoquinolone scaffold via parallel synthesis to afford a compound with crystallographic data, 16 (IC(50) 41.4 µM, LE = 0.33). Subsequent lead optimization efforts provided 24 (IC(50) 1.8 µM, LE = 0.42), with greater than fivefold selectivity against other key pathway kinases.


Subject(s)
Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Protein Serine-Threonine Kinases/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , High-Throughput Screening Assays , Humans , Hydrogen Bonding , Ligands , Magnetic Resonance Imaging , Peptide Fragments/chemistry , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Pyruvate Dehydrogenase Acetyl-Transferring Kinase
14.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 3): o650, 2011 Feb 19.
Article in English | MEDLINE | ID: mdl-21522402

ABSTRACT

The title compound, C(14)H(13)BrN(2)O, was obtained by reaction of indan-1-yl methane-sulfonate with 2-amino-5-bromo-pyridin-3-ol in the presence of caesium carbonate. The indane ring system is approximately planar [all but one of the C atoms are coplanar within 0.03 Å, the latter atom being displaced by 0.206 (2) Šfrom the mean plane through the remaining atoms] and forms a dihedral angle of 58.41 (4)° with the pyridine ring. In the crystal, centrosymmetrically related mol-ecules are linked into dimers by N-H⋯N hydrogen bonds.

15.
Anal Biochem ; 414(2): 179-86, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21402045

ABSTRACT

The PI3K/AKT signaling pathway has an important regulatory role in cancer cell growth and tumorigenesis. Signal transduction through this pathway requires the assembly and activation of PDK1 and AKT at the plasma membrane. On activation of the pathway, PDK1 and AKT1/2 translocate to the membrane and bind to phosphatidylinositol-(3,4,5)-trisphosphate (PIP(3)) through interaction with their pleckstrin-homology domains. A biochemical method was developed to measure the kinase activity of PDK1 and AKT1/2, utilizing nickel-chelating coated lipid vesicles as a way to mimic the membrane environment. The presence of these vesicles in the reaction buffer enhanced the specific activity of the His-tagged PDK1 (full-length, and the truncated kinase domain) and the activity of the full-length His-tagged AKT1 and AKT2 when assayed in a cascade-type reaction. This enhanced biochemical assay is also suitable for measuring the inhibition of PDK1 by several selective compounds from the carbonyl-4-amino-pyrrolopyrimidine (CAP) series. One of these inhibitors, PF-5168899, was further evaluated using a high content cell-based assay in the presence of CHO cells engineered with GFP-PDK1.


Subject(s)
Adenine/analogs & derivatives , Enzyme Assays/methods , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrazines/pharmacology , Signal Transduction , 3-Phosphoinositide-Dependent Protein Kinases , Adenine/chemistry , Adenine/pharmacology , Animals , CHO Cells , Cricetinae , Cricetulus , Histidine/genetics , Histidine/metabolism , Humans , Kinetics , Oligopeptides/genetics , Oligopeptides/metabolism , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Pyrazines/chemistry , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
16.
Biochem J ; 431(2): 245-55, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20704563

ABSTRACT

S6K1 (p70 ribosomal S6 kinase 1) is activated by insulin and growth factors via the PI3K (phosphoinositide 3-kinase) and mTOR (mammalian target of rapamycin) signalling pathways. S6K1 regulates numerous processes, such as protein synthesis, growth, proliferation and longevity, and its inhibition has been proposed as a strategy for the treatment of cancer and insulin resistance. In the present paper we describe a novel cell-permeable inhibitor of S6K1, PF-4708671, which specifically inhibits the S6K1 isoform with a Ki of 20 nM and IC50 of 160 nM. PF-4708671 prevents the S6K1-mediated phosphorylation of S6 protein in response to IGF-1 (insulin-like growth factor 1), while having no effect upon the PMA-induced phosphorylation of substrates of the highly related RSK (p90 ribosomal S6 kinase) and MSK (mitogen- and stress-activated kinase) kinases. PF-4708671 was also found to induce phosphorylation of the T-loop and hydrophobic motif of S6K1, an effect that is dependent upon mTORC1 (mTOR complex 1). PF-4708671 is the first S6K1-specific inhibitor to be reported and will be a useful tool for delineating S6K1-specific roles downstream of mTOR.


Subject(s)
Imidazoles/pharmacology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Cell Line , Humans , Imidazoles/chemistry , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes , Phosphorylation/drug effects , Phosphothreonine/metabolism , Piperazines/chemistry , Protein Kinase Inhibitors/chemistry , Proteins , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Substrate Specificity/drug effects , TOR Serine-Threonine Kinases , Transcription Factors/metabolism
17.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 1): o242, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-21580123

ABSTRACT

The title compound, C(12)H(13)ClN(6), was prepared by reaction of 4,5-dichloro-7H-pyrrolo[2,3-d]pyrimidine with 2-(1H-imid-azol-4-yl)-N-methyl-ethanamine, and the X-ray study confirmed that chloro-substituent in six-membered ring was replaced in the reaction. The exocyclic N atom environment is approximately coplanar with the pyrrolo[2,3-d]pyrimidine [corresponding dihedral angle is 5.5 (1)°], whereas the mean plane of the N-C-C-C link connecting with the imidazolyl ring is almost exactly orthogonal to the plane of the bicyclic system [dihedral angle = 91.6 (2)°]. The imidazolyl plane itself, however, forms a relatively small dihedral angle of 20.8 (1)° with the pyrrolo[2,3-d]pyrimidine plane. There are two independent N-H⋯N hydrogen bonds in the structure, which link mol-ecules into layers parallel to (03).

18.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 4): o870, 2009 Mar 25.
Article in English | MEDLINE | ID: mdl-21582582

ABSTRACT

The reaction of (E)-tert-butyl 4-[3-(dimethyl-amino)acrylo-yl]piperidine-1-carboxyl-ate with methyl-hydrazine leads to the formation of the title compound, C(14)H(23)N(3)O(2), with a 1-methyl-1H-pyrazol-5-yl substituent. The plane of the pyrazole ring forms a dihedral angle of 33.4 (1)° with the approximate mirror plane of the piperidine ring.

19.
Bioorg Med Chem Lett ; 18(23): 6071-7, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18951788

ABSTRACT

The synthesis and SAR for a series of diaminopyrimidines as PYK2 inhibitors are described. Using a combination of library and traditional medicinal chemistry techniques, a FAK-selective chemical series was transformed into compounds possessing good PYK2 potency and 10- to 20-fold selectivity against FAK. Subsequent studies found that the majority of the compounds were positive in a reactive metabolite assay, an indicator for potential toxicological liabilities. Based on the proposed mechanism for bioactivation, as well as a combination of structure-based drug design and traditional medicinal chemistry techniques, a follow-up series of PYK2 inhibitors was identified that maintained PYK2 potency, FAK selectivity and HLM stability, yet were negative in the RM assay.


Subject(s)
Focal Adhesion Kinase 2/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Animals , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Disease Models, Animal , Drug Design , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Humans , Molecular Conformation , Molecular Structure , Osteoporosis/drug therapy , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
20.
Cancer Res ; 68(6): 1935-44, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18339875

ABSTRACT

Cancer cells are characterized by the ability to grow in an anchorage-independent manner. The activity of the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is thought to contribute to this phenotype. FAK localizes in focal adhesion plaques and has a role as a scaffolding and signaling protein for other adhesion molecules. Recent studies show a strong correlation between increased FAK expression and phosphorylation status and the invasive phenotype of aggressive human tumors. PF-562,271 is a potent, ATP-competitive, reversible inhibitor of FAK and Pyk2 catalytic activity with a IC(50) of 1.5 and 14 nmol/L, respectively. Additionally, PF-562,271 displayed robust inhibition in an inducible cell-based assay measuring phospho-FAK with an IC(50) of 5 nmol/L. PF-562,271 was evaluated against multiple kinases and displays >100x selectivity against a long list of nontarget kinases. PF-562,271 inhibits FAK phosphorylation in vivo in a dose-dependent fashion (calculated EC(50) of 93 ng/mL, total) after p.o. administration to tumor-bearing mice. In vivo inhibition of FAK phosphorylation (>50%) was sustained for >4 hours with a single p.o. dose of 33 mg/kg. Antitumor efficacy and regressions were observed in multiple human s.c. xenograft models. No weight loss, morbidity, or mortality were observed in any in vivo experiment. Tumor growth inhibition was dose and drug exposure dependent. Taken together, these data show that kinase inhibition with an ATP-competitive small molecule inhibitor of FAK decreases the phospho-status in vivo, resulting in robust antitumor activity.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Glioblastoma/drug therapy , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Female , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Indoles/chemical synthesis , Indoles/chemistry , Mice , Mice, Nude , Models, Chemical , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...