Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 134(3): 710-721, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36759166

ABSTRACT

Biomass fuels (wood) are commonly used indoors in underventilated environments for cooking in the developing world, but the impact on lung physiology is poorly understood. Quantitative computed tomography (qCT) can provide sensitive metrics to compare the lungs of women cooking with wood vs. liquified petroleum gas (LPG). We prospectively assessed (qCT and spirometry) 23 primary female cooks (18 biomass, 5 LPG) with no history of cardiopulmonary disease in Thanjavur, India. CT was obtained at coached total lung capacity (TLC) and residual volume (RV). qCT assessment included texture-derived ground glass opacity [GGO: Adaptive Multiple Feature Method (AMFM)], air-trapping (expiratory voxels ≤ -856HU) and image registration-based assessment [Disease Probability Measure (DPM)] of emphysema, functional small airways disease (%AirTrapDPM), and regional lung mechanics. In addition, within-kitchen exposure assessments included particulate matter <2.5 µm(PM2.5), black carbon, ß-(1, 3)-d-glucan (surrogate for fungi), and endotoxin. Air-trapping went undetected at RV via the threshold-based measure (voxels ≤ -856HU), possibly due to density shifts in the presence of inflammation. However, DPM, utilizing image-matching, demonstrated significant air-trapping in biomass vs. LPG cooks (P = 0.049). A subset of biomass cooks (6/18), identified using k-means clustering, had markedly altered DPM-metrics: greater air-trapping (P < 0.001), lower TLC-RV volume change (P < 0.001), a lower mean anisotropic deformation index (ADI; P < 0.001), and elevated % GGO (P < 0.02). Across all subjects, a texture measure of bronchovascular bundles was correlated to the log-transformed ß-(1, 3)-d-glucan concentration (P = 0.026, R = 0.46), and black carbon (P = 0.04, R = 0.44). This pilot study identified environmental links with qCT-based lung pathologies and a cluster of biomass cooks (33%) with significant small airways disease.NEW & NOTEWORTHY Quantitative computed tomography has identified a cluster of women (33%) cooking with biomass fuels (wood) with image-based markers of functional small airways disease and associated alterations in regional lung mechanics. Texture and image registration-based metrics of lung function may allow for early detection of potential inflammatory processes that may arise in response to inhaled biomass smoke, and help identify phenotypes of chronic lung disease prevalent in nonsmoking women in the developing world.


Subject(s)
Air Pollution, Indoor , Pulmonary Disease, Chronic Obstructive , Female , Humans , Pilot Projects , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Biomass , Lung/diagnostic imaging , Particulate Matter/analysis , Cooking , Carbon
2.
Environ Res ; 189: 109888, 2020 10.
Article in English | MEDLINE | ID: mdl-32979995

ABSTRACT

BACKGROUND: Cooks exposed to biomass fuel experience increased risk of respiratory disease and mortality. We sought to characterize lung function and environmental exposures of primary cooking women using two fuel-types in southeastern India, as well as to investigate the effect of particulate matter (PM) from kitchens on human airway epithelial (HAE) cells in vitro. METHODS: We assessed pre- and post-bronchodilator lung function on 25 primary female cooks using wood biomass or liquified petroleum gas (LPG), and quantified exposures from 34 kitchens (PM2.5, PM < 40 µm, black carbon, endotoxin, and PM metal and bacterial content). We then challenged HAE cells with PM, assessing its cytotoxicity to small-airway cells (A549) and its effect on: transepithelial conductance and macromolecule permeability (NuLi cells), and antimicrobial activity (using airway surface liquid, ASL, from primary HAE cells). RESULTS: Lung function was impaired in cooks using both fuel-types. 60% of participants in both fuel-types had respiratory restriction (post bronchodilator FEV1/FVC>90). The remaining 40% in the LPG group had normal spirometry (post FEV1/FVC = 80-90), while only 10% of participants in the biomass group had normal spirometry, and the remaining biomass cooks (30%) had respiratory obstruction (post FEV1/FVC<80). Significant differences were found in environmental parameters, with biomass kitchens containing greater PM2.5, black carbon, zirconium, arsenic, iron, vanadium, and endotoxin concentrations. LPG kitchens tended to have more bacteria (p = 0.14), and LPG kitchen PM had greater sulphur concentrations (p = 0.02). In vitro, PM induced cytotoxicity in HAE A549 cells in a dose-dependent manner, however the effect was minimal and there were no differences between fuel-types. PM from homes of participants with a restrictive physiology increased electrical conductance of NuLi HAE cells (p = 0.06) and decreased macromolar permeability (p ≤ 0.05), while PM from homes of those with respiratory obstruction tended to increase electrical conductance (p = 0.20) and permeability (p = 0.07). PM from homes of participants with normal spirometry did not affect conductance or permeability. PM from all homes tended to inhibit antimicrobial activity of primary HAE cell airway surface liquid (p = 0.06). CONCLUSIONS: Biomass cooks had airway obstruction, and significantly greater concentrations of kitchen environmental contaminants than LPG kitchens. PM from homes of participants with respiratory restriction and obstruction altered airway cell barrier function, elucidating mechanisms potentially responsible for respiratory phenotypes observed in biomass cooks.


Subject(s)
Air Pollution, Indoor , Petroleum , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Biomass , Cooking , Female , Humans , India , Lung/chemistry , Particulate Matter/analysis , Particulate Matter/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...