Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22276709

ABSTRACT

BackgroundRecently emerged variants of SARS-CoV-2 have shown greater potential to cause vaccine breakthrough infections. MethodsA matched cohort analysis used a genomic sequence dataset linked with demographic and vaccination information from New York State (NYS). Two sets of conditional logistic regression analyses were performed, one during the emergence of Delta and another during the emergence of Omicron. For each set, cases were defined as individuals with the emerging lineage, and controls were individuals infected with any other lineage. The adjusted associations of vaccination status, vaccine type, time since vaccination, and age with lineage were assessed using odds ratios (OR) and 95% confidence intervals (CI). ResultsFully vaccinated status (OR: 3, 95% CI: 2.0 - 4.9) and Boosted status (OR 6.7, 95% CI: 3.4 - 13.0) were significantly associated with having the Omicron lineage during the Omicron emergence period. Risk of Omicron infection relative to Delta generally decreased with increasing age (OR: 0.964, 95% CI 0.950 - 0.978). The Delta emergence analysis had low statistical power for the observed effect size. ConclusionsVaccines offered less protection against Omicron, thereby increasing the number of potential hosts for the emerging variant. Lay SummaryThere are different variants, or types, of the virus that causes COVID-19. These variants may differ in their ability to infect a person, cause severe disease, or evade vaccine protection. From previous studies, we know that vaccines provide substantial protection against the original COVID-19 virus. In this study, we wanted to know how some of the new variants compare to one another in this regard. We found that the Omicron variant could break through vaccine protection more effectively than the Delta variant. The data suggested that Delta may be better able to break through vaccines compared to previous variants, including Alpha, but our sample sizes were low, so this pattern was not statistically significant. Individuals with a booster shot had much stronger protection against Delta compared to their protection against Omicron. We also found that younger people were more likely to be infected with Omicron than Delta.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21257125

ABSTRACT

The emergence of SARS-CoV-2, leading to COVID-19, necessitated the development of new molecular and serological tests. Here, we describe a multiplexed serological assay developed as the global pandemic moved into New York State in the spring of 2020. The original microsphere immunoassay used a target antigen from the SARS-CoV-1 virus responsible for the 2003 SARS outbreak, but evolved to incorporate multiple SARS-CoV-2 protein antigens (nucleocapsid, spike and spike domains, spike and nucleocapsid proteins from seasonal human coronaviruses). Besides being highly versatile due to multiplex capabilities, the assay was highly specific and sensitive and adaptable to measuring both total antibodies and antibody isotypes. While determining the assay performance characteristics, we were able to identify antibody production patterns (e.g., kinetics of isotypes, individual variations) for total antibodies and individual antibody classes. Overall, the results provide insights into the laboratory response to new serology needs, and how the evolution and fine-tuning of a serology assay helped contribute to a better understanding of the antibody response to SARS-CoV-2.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20235044

ABSTRACT

The association of mortality with early humoral response to SARS-CoV-2 infection within the first few days after onset of symptoms (DAOS) has not been thoroughly investigated partly due to a lack of sufficiently sensitive antibody testing methods. Here we report two sensitive and automated testing-on-a-probe (TOP) biosensor assays for SARS-CoV-2 viral specific total antibodies (TAb) and surrogate neutralizing antibodies (SNAb), which are suitable for clinical use. The TOP assays employ an RBD-coated quartz probe using a Cy5-Streptavidin-polysacharide conjugate to improved sensitivity and minimize interference. Disposable cartridge containing pre-dispensed reagents requires no liquid manipulation or fluidics during testing. The TOP-TAb assay exhibited higher sensitivity in the 0-7 DAOS window than a widely used FDA-EUA assay. The rapid (18 min) and automated TOP-SNAb correlated well with two well-established SARS-CoV-2 virus neutralization tests. The clinical utility of the TOP assays was demonstrated by evaluating early antibody responses in 120 SARS-CoV-2 RT-PCR positive adult hospitalized patients. Higher baseline TAb and SNAb positivity rates and more robust antibody responses were seen in patients who survived COVID-19 than those who died in the hospital. Survival analysis using the Cox Proportional Hazards Model showed that patients who were TAb and SNAb negative at initial hospital presentation were at a higher risk of in-hospital mortality. Furthermore, TAb and SNAb levels at presentation were inversely associated with SARS-CoV-2 viral load based on concurrent RT-PCR testing. Overall, the sensitive and automated TAb and SNAb assays allow detection of early SARS-CoV-2 antibodies which associate with mortality.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20208603

ABSTRACT

COVID-19 is associated with a wide spectrum of disease severity, ranging from asymptomatic to acute respiratory distress syndrome (ARDS). Paradoxically, a direct relationship has been suggested between COVID-19 disease severity, and the levels of circulating SARS-CoV-2-specific antibodies, including virus neutralizing titers. Through a serological analysis of serum samples from 536 convalescent healthcare workers, we found that SARS-CoV-2-specific and virus-neutralizing antibody levels were indeed elevated in individuals that experienced severe disease. The severity-associated increase in SARS-CoV-2-specific antibody was dominated by IgG, with an IgG subclass ratio skewed towards elevated receptor binding domain (RBD)- and S1-specific IgG3. However, RBD- and S1-specific IgG1, rather than IgG3 were best correlated with virus-neutralizing titers. We propose that Spike-specific IgG3 subclass utilization contributes to COVID-19 disease severity through potent Fc-mediated effector functions. These results have significant implications for SARS-CoV-2 vaccine design, and convalescent plasma therapy.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20150557

ABSTRACT

Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administrations (FDA) guidelines for convalescent plasma recommends target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at low (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity increased with time post symptom onset (PSO), reaching a peak at 31-35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was [~]93% (PRNT50) and [~]54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (>960 ELISA titers) showed maximal activity, but not all high titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-197913

ABSTRACT

Most of the patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mount a humoral immune response to the virus within a few weeks of infection, but the duration of this response and how it correlates with clinical outcomes has not been completely characterized. Of particular importance is the identification of immune correlates of infection that would support public health decision-making on treatment approaches, vaccination strategies, and convalescent plasma therapy. While ELISA-based assays to detect and quantitate antibodies to SARS-CoV-2 in patient samples have been developed, the detection of neutralizing antibodies typically requires more demanding cell-based viral assays. Here, we present a safe and efficient protein-based assay for the detection of serum and plasma antibodies that block the interaction of the SARS-CoV-2 spike protein receptor binding domain (RBD) with its receptor, angiotensin converting-enzyme 2 (ACE2). The assay serves as a surrogate neutralization assay and is performed on the same platform and in parallel with an enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against the RBD, enabling a direct comparison. The results obtained with our assay correlate with those of two viral based assays, a plaque reduction neutralization test (PRNT) that uses live SARS-CoV-2 virus, and a spike pseudotyped viral-vector-based assay.

SELECTION OF CITATIONS
SEARCH DETAIL
...