Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231927

ABSTRACT

Over the years, the demands on the durability and quality of polyester fabrics used for sportswear have increased, as these fabrics contribute to athletes' performance. At the same time, the use of recycled polyester material is increasingly being promoted for environmental reasons. This study focused on investigating the properties of standard and recycled polyester fabrics before and after aging according to the developed aging protocol. The surface morphology, thickness, elongation at break, force at break, bursting force, mass loss due to abrasion and moisture management of the fabrics were tested. The results showed that the aging process had no influence on the surface changes in the fabrics. More specifically, there were neither surface cracks on the fibre surface nor chemical changes. The highest decrease in force at break for standard polyester fabrics with elastane was up to 26%, and up to 15% for fabrics made of recycled polyester. The loss of mass due to abrasion was greater for recycled polyester than for standard polyester fabrics. The average ability of the fabrics to absorb moisture decreased by up to 23% after aging, while the wetting time increased by up to 30%, with the highest increase observed in recycled fabrics.

2.
Polymers (Basel) ; 14(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35566852

ABSTRACT

With the increase in awareness of the importance of engagement in physical activities, high requirements have been placed on polymers intended for use in sports. A number of authors investigated the influence of aging factors on the performance of the polymer. Still, there is a lack of aging protocols that would be product-centered, especially when high performance is imperative. This paper presents a new approach to polymer aging and examines the change of the identified set of properties due to aging under different conditions, and the duration of each (topography, thickness, moisture management, elongation, and bursting force). The results of the testing revealed the increase in thickness due to exposure, especially to the sun-exposed materials. The ability of materials to elongate until the moment of rupture decreases due to exposure to the sun (strong relationship to the time of exposure; R2 reaches 0.99) and the bursting force (up to 6.8%). Furthermore, results indicate the significantly impaired capacity of the polymer material to absorb moisture. The results of measurements indicated (derived) by spectroscopic studies, based on the ATR-FTIR (attenuated total reflectance) method, showed that there was no detectable influence of aging in the sun or shade on the chemical structure of polyester samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...