Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(49)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37669644

ABSTRACT

Probabilistic (p-) computing is a physics-based approach to addressing computational problems which are difficult to solve by conventional von Neumann computers. A key requirement for p-computing is the realization of fast, compact, and energy-efficient probabilistic bits. Stochastic magnetic tunnel junctions (MTJs) with low energy barriers, where the relative dwell time in each state is controlled by current, have been proposed as a candidate to implement p-bits. This approach presents challenges due to the need for precise control of a small energy barrier across large numbers of MTJs, and due to the need for an analog control signal. Here we demonstrate an alternative p-bit design based on perpendicular MTJs that uses the voltage-controlled magnetic anisotropy (VCMA) effect to create the random state of a p-bit on demand. The MTJs are stable (i.e. have large energy barriers) in the absence of voltage, and VCMA-induced dynamics are used to generate random numbers in less than 10 ns/bit. We then show a compact method of implementing p-bits by using VC-MTJs without a bias current. As a demonstration of the feasibility of the proposed p-bits and high quality of the generated random numbers, we solve up to 40 bit integer factorization problems using experimental bit-streams generated by VC-MTJs. Our proposal can impact the development of p-computers, both by supporting a fully spintronic implementation of a p-bit, and alternatively, by enabling true random number generation at low cost for ultralow-power and compact p-computers implemented in complementary metal-oxide semiconductor chips.

2.
Nat Commun ; 10(1): 543, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30710092

ABSTRACT

Energy-efficient switching of magnetization is a central problem in nonvolatile magnetic storage and magnetic neuromorphic computing. In the past two decades, several efficient methods of magnetic switching were demonstrated including spin torque, magneto-electric, and microwave-assisted switching mechanisms. Here we experimentally show that low-dimensional magnetic chaos induced by alternating spin torque can strongly increase the rate of thermally-activated magnetic switching in a nanoscale ferromagnet. This mechanism exhibits a well-pronounced threshold character in spin torque amplitude and its efficiency increases with decreasing spin torque frequency. We present analytical and numerical calculations that quantitatively explain these experimental findings and reveal the key role played by low-dimensional magnetic chaos near saddle equilibria in enhancement of the switching rate. Our work unveils an important interplay between chaos and stochasticity in the energy assisted switching of magnetic nanosystems and paves the way towards improved energy efficiency of spin torque memory and logic.

3.
Rev Sci Instrum ; 88(12): 123708, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289235

ABSTRACT

Time-resolved scanning Kerr microscopy (TRSKM) is a powerful technique for the investigation of picosecond magnetization dynamics at sub-micron length scales by means of the magneto-optical Kerr effect (MOKE). The spatial resolution of conventional (focused) Kerr microscopy using a microscope objective lens is determined by the optical diffraction limit so that the nanoscale character of the magnetization dynamics is lost. Here we present a platform to overcome this limitation by means of a near-field TRSKM that incorporates an atomic force microscope (AFM) with optical access to a metallic AFM probe with a nanoscale aperture at its tip. We demonstrate the near-field capability of the instrument through the comparison of time-resolved polar Kerr images of magnetization dynamics within a microscale NiFe rectangle acquired using both near-field and focused TRSKM techniques at a wavelength of 800 nm. The flux-closure domain state of the in-plane equilibrium magnetization provided the maximum possible dynamic polar Kerr contrast across the central domain wall and enabled an assessment of the magneto-optical spatial resolution of each technique. Line profiles extracted from the Kerr images demonstrate that the near-field spatial resolution was enhanced with respect to that of the focused Kerr images. Furthermore, the near-field polar Kerr signal (∼1 mdeg) was more than half that of the focused Kerr signal, despite the potential loss of probe light due to internal reflections within the AFM tip. We have confirmed the near-field operation by exploring the influence of the tip-sample separation and have determined the spatial resolution to be ∼550 nm for an aperture with a sub-wavelength diameter of 400 nm. The spatial resolution of the near-field TRSKM was in good agreement with finite element modeling of the aperture. Large amplitude electric field along regions of the modeled aperture that lie perpendicular to the incident polarization indicate that the aperture can support plasmonic excitations. The comparable near-field and focused polar Kerr signals suggest that such plasmonic excitations may lead to an enhanced near-field MOKE. This work demonstrates that near-field TRSKM can be performed without significant diminution of the polar Kerr signal in relatively large, sub-wavelength diameter apertures, while development of a near-field AFM probe utilizing plasmonic antennas specifically designed for measurements deeper into the nanoscale is discussed.

4.
Nano Lett ; 17(1): 572-577, 2017 01 11.
Article in English | MEDLINE | ID: mdl-28002674

ABSTRACT

Manipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing, but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field. Parametric excitation of magnetization is a versatile method of short-wavelength spin wave generation, and thus, our results pave the way toward energy-efficient nanomagnonic devices.

5.
Nat Commun ; 7: 11259, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27052973

ABSTRACT

Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW(-1) at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors.

6.
Phys Rev Lett ; 111(8): 087206, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-24010473

ABSTRACT

Stochastic dynamics of spin torque oscillators can be described in terms of magnetization drift and diffusion over a current-dependent effective energy surface given by the Fokker-Planck equation. Here we present a method that directly probes this effective energy surface via time-resolved measurements of the microwave voltage generated by a spin torque oscillator. We show that the effective energy approach provides a simple recipe for predicting spectral linewidths and line shapes near the generation threshold. Our time domain technique also accurately measures the fieldlike component of spin torque in a wide range of the voltage bias values.

7.
Sci Rep ; 3: 1426, 2013.
Article in English | MEDLINE | ID: mdl-23478390

ABSTRACT

The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.

8.
ACS Nano ; 6(7): 6115-21, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22663148

ABSTRACT

The excitation of the steady-state precessions of magnetization opens a new way for nanoscale microwave oscillators by exploiting the transfer of spin angular momentum from a spin-polarized current to a ferromagnet, referred to as spin-transfer nano-oscillators (STNOs). For STNOs to be practical, however, their relatively low output power and their relatively large line width must be improved. Here we demonstrate that microwave signals with maximum measured power of 0.28 µW and simultaneously narrow line width of 25 MHz can be generated from CoFeB-MgO-based magnetic tunnel junctions having an in-plane magnetized reference layer and a free layer with strong perpendicular anisotropy. Moreover, the generation efficiency is substantially higher than previously reported STNOs. The results will be of importance for the design of nanoscale alternatives to traditional silicon oscillators used in radio frequency integrated circuits.

9.
Nature ; 437(7057): 389-92, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16163351

ABSTRACT

The spin torque effect that occurs in nanometre-scale magnetic multilayer devices can be used to generate steady-state microwave signals in response to a d.c. electrical current. This establishes a new functionality for magneto-electronic structures that are more commonly used as magnetic field sensors and magnetic memory elements. The microwave power emitted from a single spin torque nano-oscillator (STNO) is at present typically less than 1 nW. To achieve a more useful power level (on the order of microwatts), a device could consist of an array of phase coherent STNOs, in a manner analogous to arrays of Josephson junctions and larger semiconductor oscillators. Here we show that two STNOs in close proximity mutually phase-lock-that is, they synchronize, which is a general tendency of interacting nonlinear oscillator systems. The phase-locked state is distinct, characterized by a sudden narrowing of signal linewidth and an increase in power due to the coherence of the individual oscillators. Arrays of phase-locked STNOs could be used as nanometre-scale reference oscillators. Furthermore, phase control of array elements (phased array) could lead to nanometre-scale directional transmitters and receivers for wireless communications.

SELECTION OF CITATIONS
SEARCH DETAIL
...