Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 66(12): 2425-2431, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36163396

ABSTRACT

Understanding the crop response to elevated carbon dioxide (e[CO2]) condition is important and has attracted considerable interest owing to the variability and crop-specific response. In mungbean, reports are available regarding the effect of e[CO2] on its growth, physiology and yield. However, no information are available on the germination and vigour status of seeds produced at e[CO2]. Therefore, in the present investigation, mungbean (Virat) was grown in the open top chamber during summer season of 2018 and 2019 to study the implications of e[CO2] (600 ppm) on quality of the harvested seeds (germination and vigour). The exposure of mungbean plant to e[CO2] had no major impact on seed quality as the percent viability (normal seedling + hard seeds) was not reduced. However, in one season (2018), the seed germination (normal seedling) was slightly reduced from 72 to 68%, attributed majorly to an increase in the hard seeds (from 13 to 19%), a predominant form of seed dormancy in mungbean. The changes in seed germination were apparent only in first year of the experiment. Accelerated ageing test (AAT) and storage studies revealed no differences in the vigour of seeds produced at ambient and e[CO2] environments. Also, the seeds from e[CO2] had low protein and sugar but recorded higher starch content than the seeds from ambient [CO2].


Subject(s)
Fabaceae , Vigna , Carbon Dioxide/metabolism , Germination/physiology , Fabaceae/metabolism , Seeds/metabolism , Seedlings
2.
Physiol Mol Biol Plants ; 27(2): 251-263, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33707867

ABSTRACT

In the present scenario of climate change with constantly increasing CO2 concentration, there is a risk of altered crop performance in terms of growth, yield, grain nutritional value and seed quality. Therefore, an experiment was conducted in open top chamber (OTCs) during 2017-18 and 2018-19 to assess the effect of elevated atmospheric carbondioxide (e[CO2]) (600 ppm) on chickpea (cv. JG 14) crop growth, biomass accumulation, physiological function, seed yield and its quality in terms of germination and vigour. The e[CO2] treatment increased the plant height, leaf and stem biomass over ambient CO2 (a[CO2]) treatment. The e[CO2] increased seed yield by 11-18% which was attributed to an increase in the number of pods (6-10%) and seeds plant-1 (8-9%) over a[CO2]. However, e[CO2] reduced the seed protein (7%), total phenol (13%) and thiobarbituric acid reactive substances (12%) and increased the starch (21%) and water uptake rate as compared to seeds harvested from a[CO2] environment. Exposing chickpea plant to e[CO2] treatment had no impact on germination and vigour of the harvested seeds. Also, the physical attributes, total soluble sugar and antioxidant enzymes activities of harvested seeds were comparable in a[CO2] and e[CO2] treatment. Hence, the experimental findings depict that e[CO2] upto 600 ppm could add to the growth and productivity of chickpea in a sub-tropical climate with an implication on its nutritional quality of the produce.

SELECTION OF CITATIONS
SEARCH DETAIL
...