Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38647032

ABSTRACT

Vasodilator-stimulated phosphoprotein (VASP) family proteins play a crucial role in mediating the actin network architecture in the cytoskeleton. The Ena/VASP homology 2 (EVH2) domain in each of the four identical arms of the tetrameric VASP consists of a loading poly-Pro region, a G-actin-binding domain (GAB), and an F-actin-binding domain (FAB). Together, the poly-Pro, GAB, and FAB domains allow VASP to bind to sides of actin filaments in a bundle, and recruit profilin-G-actin to processively elongate the filaments. The atomic resolution structure of the ternary complex, consisting of the loading poly-Pro region and GAB domain of VASP with profilin-actin, has been solved over a decade ago; however, a detailed structure of the FAB-F-actin complex has not been resolved to date. Experimental insights, based on homology of the FAB domain with the C region of WASP, have been used to hypothesize that the FAB domain binds to the cleft between subdomains 1 and 3 of F-actin. Here, in order to develop our understanding of the VASP-actin complex, we first augment known structural information about the GAB domain binding to actin with the missing FAB domain-actin structure, which we predict using homology modeling and docking simulations. In earlier work, we used mutagenesis and kinetic modeling to study the role of domain-level binding-unbinding kinetics of Ena/VASP on actin filaments in a bundle, specifically on the side of actin filaments. We further look at the nature of the side-binding of the FAB domain of VASP at the atomistic level using our predicted structure, and tabulate effective mutation sites on the FAB domain that would disrupt the VASP-actin complex. We test the binding affinity of Ena with mutated FAB domain using total internal reflection fluorescence microscopy experiments. The binding affinity of VASP is affected significantly for the mutant, providing additional support for our predicted structure.

2.
J Chem Inf Model ; 64(4): 1347-1360, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38346863

ABSTRACT

Incomplete structural details of Mycobacterium tuberculosis (Mtb) fatty acid synthase-I (FAS-I) at near-atomic resolution have limited our understanding of the shuttling mechanism of its mobile acyl carrier protein (ACP). Here, we have performed atomistic molecular dynamics simulation of Mtb FAS-I with a homology-modeled structure of ACP stalled at dehydratase (DH) and identified key residues that mediate anchoring of the recognition helix of ACP near DH. The observed distance between catalytic residues of ACP and DH agrees with that reported for fungal FAS-I. Further, the conformation of the peripheral linker is found to be crucial in stabilizing ACP near DH. Correlated interdomain motion is observed between DH, enoyl reductase, and malonyl/palmitoyl transferase, consistent with prior experimental reports of fungal and Mtb FAS-I.


Subject(s)
Acyl Carrier Protein , Mycobacterium tuberculosis , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/metabolism , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/metabolism , Molecular Dynamics Simulation , Catalysis
3.
J Chem Theory Comput ; 17(3): 1900-1913, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33596075

ABSTRACT

Actin filament networks in eukaryotic cells are constantly remodeled through nucleotide state controlled interactions with actin binding proteins, leading to macroscopic structures such as bundled filaments, branched filaments, and so on. The nucleotide (ATP) hydrolysis, phosphate release, and polymerization/depolymerization reactions that lead to the formation of these structures are correlated with the conformational fluctuations of the actin subunits at the molecular scale. The resulting structures generate and experience varying levels of force and impart cells with several functionalities such as their ability to move, divide, transport cargo, etc. Models that explicitly connect the structure to reactions are essential to elucidate a fundamental level of understanding of these processes. In this regard, a bottom-up Ultra-Coarse-Grained (UCG) model of actin filaments that can simulate ATP hydrolysis, inorganic phosphate release (Pi), and depolymerization reactions is presented in this work. In this model, actin subunits are represented using coarse-grained particles that evolve in time and undergo reactions depending on the conformations sampled. The reactions are represented through state transitions, with each state represented by a unique effective coarse-grained potential. Effects of compressive and tensile strains on the rates of reactions are then analyzed. Compressive strains tend to unflatten the actin subunits, reduce the rate of ATP hydrolysis, and increase the Pi release rate. On the other hand, tensile strain flattens subunits, increases the rate of ATP hydrolysis, and decrease the Pi release rate. Incorporating these predictions into a Markov State Model highlighted that strains alter the steady-state distribution of subunits with ADPPi and ADP nucleotide, thus identifying possible additional factors underlying the cooperative binding of regulatory proteins to actin filaments.


Subject(s)
Actin Cytoskeleton/metabolism , Adenosine Triphosphate/metabolism , Phosphates/metabolism , Actin Cytoskeleton/chemistry , Adenosine Triphosphate/chemistry , Humans , Hydrolysis , Models, Molecular , Phosphates/chemistry
4.
Proc Natl Acad Sci U S A ; 117(48): 30458-30464, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199648

ABSTRACT

Actin filaments elongate and shorten much faster at their barbed end than their pointed end, but the molecular basis of this difference has not been understood. We use all-atom molecular dynamics simulations to investigate the properties of subunits at both ends of the filament. The terminal subunits tend toward conformations that resemble actin monomers in solution, while contacts with neighboring subunits progressively flatten the conformation of internal subunits. At the barbed end the terminal subunit is loosely tethered by its DNase-1 loop to the third subunit, because its monomer-like conformation precludes stabilizing contacts with the penultimate subunit. The motions of the terminal subunit make the partially flattened penultimate subunit accessible for binding monomers. At the pointed end, unique contacts between the penultimate and terminal subunits are consistent with existing cryogenic electron microscopic (cryo-EM) maps, limit binding to incoming monomers, and flatten the terminal subunit, which likely promotes ATP hydrolysis and rapid phosphate release. These structures explain the distinct polymerization kinetics of the two ends.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Models, Molecular , Protein Conformation , Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Binding Sites , Molecular Dynamics Simulation , Protein Binding , Protein Multimerization , Protein Subunits
5.
Eur Phys J E Soft Matter ; 42(5): 67, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31129744

ABSTRACT

Single-file single-molecule electrophoresis through a nanopore has emerged as one of the successful methods in DNA sequencing. In gaining sufficient accuracy in the readout of the sequence, it is essential to position every nucleotide of the sequence with great accuracy and precision at the interrogation point of the nanopore. A combination of a ratcheting enzyme and a threaded DNA across a protein pore under an electric field is experimentally shown to be a viable method for DNA sequencing within the single-molecule electrophoresis technique. Using coarse-grained models of the enzyme and the protein nanopore, and Langevin dynamics simulations, we have characterized the conformational fluctuations of the DNA inside the nanopore. We show that the conformational fluctuations of DNA are significant for slowly operating enzymes such as phi29 DNA polymerase. Our results imply that there is considerable uncertainty in precisely positioning a nucleotide at the interrogation point of the nanopore. The discrepancy between the results of coarse-grained simulations and the experimentally successful accurate sequencing suggests that additional features of the experiments, such as explicit treatment of electrolyte ions and hydrodynamics, must be incorporated in the simulations to accurately model experimental constructs.


Subject(s)
DNA/chemistry , DNA/metabolism , Electrophoresis , Molecular Dynamics Simulation , Molecular Motor Proteins/metabolism , Nanopores
6.
Mol Biol Cell ; 30(7): 851-862, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30601697

ABSTRACT

Ena/VASP tetramers are processive actin elongation factors that localize to diverse F-actin networks composed of filaments bundled by different cross-linking proteins, such as filopodia (fascin), lamellipodia (fimbrin), and stress fibers (α-actinin). Previously, we found that Ena takes approximately threefold longer processive runs on trailing barbed ends of fascin-bundled F-actin. Here, we used single-molecule TIRFM (total internal reflection fluorescence microscopy) and developed a kinetic model to further dissect Ena/VASP's processive mechanism on bundled filaments. We discovered that Ena's enhanced processivity on trailing barbed ends is specific to fascin bundles, with no enhancement on fimbrin or α-actinin bundles. Notably, Ena/VASP's processive run length increases with the number of both fascin-bundled filaments and Ena "arms," revealing avidity facilitates enhanced processivity. Consistently, Ena tetramers form more filopodia than mutant dimer and trimers in Drosophila culture cells. Moreover, enhanced processivity on trailing barbed ends of fascin-bundled filaments is an evolutionarily conserved property of Ena/VASP homologues, including human VASP and Caenorhabditis elegans UNC-34. These results demonstrate that Ena tetramers are tailored for enhanced processivity on fascin bundles and that avidity of multiple arms associating with multiple filaments is critical for this process. Furthermore, we discovered a novel regulatory process whereby bundle size and bundling protein specificity control activities of a processive assembly factor.


Subject(s)
Actins/metabolism , Carrier Proteins/physiology , Cytoskeletal Proteins/metabolism , Microfilament Proteins/physiology , Actin Cytoskeleton/metabolism , Actinin/metabolism , Actins/physiology , Animals , Carrier Proteins/metabolism , Cell Line , Cytoskeleton/metabolism , Kinetics , Mice , Microfilament Proteins/metabolism , Microscopy, Fluorescence/methods , Peptide Chain Elongation, Translational/physiology , Protein Binding , Pseudopodia/physiology
7.
Biophys Rev ; 10(6): 1521-1535, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30382557

ABSTRACT

Actin is an important cytoskeletal protein that serves as a building block to form filament networks that span across the cell. These networks are orchestrated by a myriad of other cytoskeletal entities including the unbranched filament-forming protein formin and branched network-forming protein complex Arp2/3. Computational models have been able to provide insights into many important structural transitions that are involved in forming these networks, and into the nature of interactions essential for actin filament formation and for regulating the behavior of actin-associated proteins. In this review, we summarize a subset of such models that focus on the atomistic features and those that can integrate atomistic features into a larger picture in a multiscale fashion.

8.
Biophys J ; 115(8): 1589-1602, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30249402

ABSTRACT

Actin filaments continually assemble and disassemble within a cell. Assembled filaments "age" as a bound nucleotide ATP within each actin subunit quickly hydrolyzes followed by a slower release of the phosphate Pi, leaving behind a bound ADP. This subtle change in nucleotide state of actin subunits affects filament rigidity as well as its interactions with binding partners. We present here a systematic multiscale ultra-coarse-graining approach that provides a computationally efficient way to simulate a long actin filament undergoing ATP hydrolysis and phosphate-release reactions while systematically taking into account available atomistic details. The slower conformational changes and their dependence on the chemical reactions are simulated with the ultra-coarse-graining model by assigning internal states to the coarse-grained sites. Each state is represented by a unique potential surface of a local heterogeneous elastic network. Internal states undergo stochastic transitions that are coupled to conformations of the underlying molecular system. The model reproduces mechanical properties of the filament and allows us to study whether conformational fluctuations in actin subunits produce cooperative filament aging. We find that the nucleotide states of neighboring subunits modulate the reaction kinetics, implying cooperativity in ATP hydrolysis and Pi release. We further systematically coarse grain the system into a Markov state model that incorporates assembly and disassembly, facilitating a direct comparison with previously published models. We find that cooperativity in ATP hydrolysis and Pi release significantly affects the filament growth dynamics only near the critical G-actin concentration, whereas far from it, both cooperative and random mechanisms show similar growth dynamics. In contrast, filament composition in terms of the bound nucleotide distribution varies significantly at all monomer concentrations studied. These results provide new insights, to our knowledge, into the cooperative nature of ATP hydrolysis and Pi release and the implications it has for actin filament properties, providing novel predictions for future experimental studies.


Subject(s)
Actin Cytoskeleton/physiology , Actins/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Phosphates/metabolism , Humans , Hydrolysis , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...