Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5551, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956067

ABSTRACT

Genetically-encoded dopamine (DA) sensors enable high-resolution imaging of DA release, but their ability to detect a wide range of extracellular DA levels, especially tonic versus phasic DA release, is limited by their intrinsic affinity. Here we show that a human-selective dopamine receptor positive allosteric modulator (PAM) can be used to boost sensor affinity on-demand. The PAM enhances DA detection sensitivity across experimental preparations (in vitro, ex vivo and in vivo) via one-photon or two-photon imaging. In vivo photometry-based detection of optogenetically-evoked DA release revealed that DETQ administration produces a stable 31 minutes window of potentiation without effects on animal behavior. The use of the PAM revealed region-specific and metabolic state-dependent differences in tonic DA levels and enhanced single-trial detection of behavior-evoked phasic DA release in cortex and striatum. Our chemogenetic strategy can potently and flexibly tune DA imaging sensitivity and reveal multi-modal (tonic/phasic) DA signaling across preparations and imaging approaches.


Subject(s)
Dopamine , Optogenetics , Dopamine/metabolism , Animals , Humans , Optogenetics/methods , Mice , Male , Corpus Striatum/metabolism , Corpus Striatum/diagnostic imaging , Receptors, Dopamine/metabolism , Receptors, Dopamine/genetics , Mice, Inbred C57BL , Allosteric Regulation , Photometry/methods , HEK293 Cells
2.
J Med Chem ; 65(5): 3786-3797, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35175768

ABSTRACT

Results from recently completed clinical studies suggest the dopamine D1 receptor positive allosteric modulator (PAM) mevidalen (1) could offer unique value for lewy body dementia (LBD) patients. In nonclinical assessments, 1 was mainly eliminated by CYP3A4-mediated metabolism, therefore at the risk of being a victim of drug-drug interactions (DDI) with CYP3A4 inhibitors and inducers. An effort was initiated to identify a new D1 PAM with an improved DDI risk profile. While attempts to introduce additional metabolic pathways mediated by other CYP isoforms failed to provide molecules with an acceptable profile, we discovered that the relative contribution of CYP-mediated oxidation and UGT-mediated conjugation could be tuned to reduce the CYP3A4-mediated victim DDI risk. We have identified LY3154885 (5), a D1 PAM that possesses similar in vitro and in vivo pharmacologic properties as 1, but is metabolized mainly by UGT, predicting it could potentially offer lower victim DDI risk in clinic.


Subject(s)
Cytochrome P-450 CYP3A , Neuroprotective Agents , Receptors, Dopamine D1/antagonists & inhibitors , Allosteric Regulation , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors , Drug Interactions , Humans , Receptors, Dopamine D1/metabolism
3.
Neuropharmacology ; 128: 351-365, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29102759

ABSTRACT

DETQ, an allosteric potentiator of the dopamine D1 receptor, was tested in therapeutic models that were known to respond to D1 agonists. Because of a species difference in affinity for DETQ, all rodent experiments used transgenic mice expressing the human D1 receptor (hD1 mice). When given alone, DETQ reversed the locomotor depression caused by a low dose of reserpine. DETQ also acted synergistically with L-DOPA to reverse the strong hypokinesia seen with a higher dose of reserpine. These results indicate potential as both monotherapy and adjunct treatment in Parkinson's disease. DETQ markedly increased release of both acetylcholine and histamine in the prefrontal cortex, and increased levels of histamine metabolites in the striatum. In the hippocampus, the combination of DETQ and the cholinesterase inhibitor rivastigmine increased ACh to a greater degree than either agent alone. DETQ also increased phosphorylation of the AMPA receptor (GluR1) and the transcription factor CREB in the striatum, consistent with enhanced synaptic plasticity. In the Y-maze, DETQ increased arm entries but (unlike a D1 agonist) did not reduce spontaneous alternation between arms at high doses. DETQ enhanced wakefulness in EEG studies in hD1 mice and decreased immobility in the forced-swim test, a model for antidepressant-like activity. In rhesus monkeys, DETQ increased spontaneous eye-blink rate, a measure that is known to be depressed in Parkinson's disease. Together, these results provide support for potential utility of D1 potentiators in the treatment of several neuropsychiatric disorders, including Parkinson's disease, Alzheimer's disease, cognitive impairment in schizophrenia, and major depressive disorder.


Subject(s)
Nervous System Diseases/metabolism , Psychotic Disorders/metabolism , Receptors, Dopamine D1/metabolism , Animals , Antipsychotic Agents/therapeutic use , Blinking/drug effects , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine Agents/therapeutic use , Isoquinolines/therapeutic use , Levodopa/therapeutic use , Macaca mulatta , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nervous System Diseases/drug therapy , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Psychotic Disorders/drug therapy , Receptors, Dopamine D1/genetics , Reserpine/therapeutic use , Sleep/drug effects , Wakefulness/drug effects
4.
Alcohol Clin Exp Res ; 40(5): 945-54, 2016 05.
Article in English | MEDLINE | ID: mdl-27084498

ABSTRACT

BACKGROUND: The nociceptin/orphanin-FQ (or opioid receptor-like [ORL1]) receptor (NOP) is localized in the mesolimbic reward pathway and has been suggested to play a role in feeding, mood, stress, and addiction. Since its deorphanization in 1995, there has been a clear dichotomy in the literature regarding whether an agonist or antagonist would provide therapeutic benefit. Specifically, the literature reports indicate that NOP receptor antagonists produce efficacy in animal models of hyperphagia and antidepressant-like activity, whereas NOP agonists produce anxiolytic-like effects and dampen reward/addiction behaviors including ethanol consumption. METHODS: We characterize here the potent, orally bioavailable NOP antagonist, LY2940094, in rodent models of ethanol consumption, including ethanol self-administration, progressive ratio operant self-administration, stress-induced reinstatement of ethanol seeking, and in vivo microdialysis in the nucleus accumbens. RESULTS: LY2940094 dose dependently reduced homecage ethanol self-administration in Indiana alcohol-preferring (P) and Marchigian Sardinian alcohol-preferring (msP) rats, without affecting food/water intake or locomotor activity. Reduced ethanol intake in P rats did not show significant tolerance over 4 days of subchronic dosing. LY2940094 attenuated progressive ratio operant responding and break points for ethanol in P rats. Moreover, stress-induced reinstatement of ethanol seeking in msP rats was completely blocked by LY2940094. Furthermore, LY2940094 blocked ethanol-stimulated dopamine release in response to ethanol challenge (1.1 g/kg, intraperitoneally). CONCLUSIONS: Our findings demonstrate for the first time that blockade of NOP receptors attenuates ethanol self-administration and ethanol-motivated behaviors, stress-induced ethanol seeking, and ethanol-induced stimulation of brain reward pathways in lines of rats that exhibit excessive ethanol consumption. Results suggest that LY2940094 may have potential therapeutic utility in treating alcohol addiction.


Subject(s)
Drug-Seeking Behavior/drug effects , Ethanol/antagonists & inhibitors , Pyrans/pharmacology , Receptors, Opioid/drug effects , Spiro Compounds/pharmacology , Administration, Oral , Animals , Conditioning, Operant/drug effects , Dopamine/metabolism , Dose-Response Relationship, Drug , Ethanol/administration & dosage , Female , Male , Microdialysis , Narcotic Antagonists/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Pyrans/administration & dosage , Rats , Rats, Inbred Strains , Self Administration , Spiro Compounds/administration & dosage , Nociceptin Receptor
5.
Front Psychiatry ; 3: 49, 2012.
Article in English | MEDLINE | ID: mdl-22629251

ABSTRACT

Atypical antipsychotics such as clozapine and olanzapine have been shown to enhance histamine turnover and this effect has been hypothesized to contribute to their improved therapeutic profile compared to typical antipsychotics. In the present study, we examined the effects of antipsychotic drugs on histamine (HA) efflux in the mPFC of the rat by means of in vivo microdialysis and sought to differentiate the receptor mechanisms which underlie such effects. Olanzapine and clozapine increased mPFC HA efflux in a dose related manner. Increased HA efflux was also observed after quetiapine, chlorpromazine, and perphenazine treatment. We found no effect of the selective 5-HT(2A) antagonist MDL100907, 5-HT(2c) antagonist SB242084, or the 5-HT(6) antagonist Ro 04-6790 on mPFC HA efflux. HA efflux was increased following treatment with selective H(1) receptor antagonists pyrilamine, diphenhydramine, and triprolidine, the H(3) receptor antagonist ciproxifan and the mixed 5-HT(2A)/H(1) receptor antagonist ketanserin. The potential novel antipsychotic drug FMPD, which has a lower affinity at H(1) receptors than olanzapine, did not affect HA efflux. Similarly, other antipsychotics with lower H(1) receptor affinity (risperidone, aripiprazole, and haloperidol) were also without effect on HA efflux. Finally, HA efflux after antipsychotic treatment was significantly correlated with affinity at H(1) receptors whereas nine other receptors, including 5-HT(2A), were not. These results demonstrate that both typical and atypical antipsychotics increase mPFC histamine efflux and this effect may be mediated via antagonism of histamine H(1) receptors.

6.
J Neurosci Res ; 90(3): 588-96, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22038504

ABSTRACT

Orexinergic neurons are discretely localized within the lateral hypothalamus and have widespread projections to the whole brain. Here, the role of orexin/hypocretin-2 receptors (OX2) in modulating extracellular concentrations of neurotransmitters was evaluated in the hypothalamus and the prefrontal cortex (PFC) of OX2 knockout (KO) mice by using a microdialysis technique. In the hypothalamus, basal concentrations of norephinephrine (NE), acetylcholine (ACh), and histamine (Hist) were significantly higher in KO mice, whereas KCl perfusion (147 mM) resulted in significantly lesser increases in NE, ACh, and Hist release in KO compared with wild-type (WT) mice. No differences in basal concentrations or evoked release of serotonin (5-HT) or dopamine (DA) were found in the hypothalamus between genotypes. In the PFC, no differences in the basal concentrations of the studied neurotransmitters were found between genotypes. After KCl perfusion, significantly higher increases in NE, 5-HT, and DA release were found in KO compared with WT mice. No differences in the evoked release of ACh and Hist in the PFC were found between genotypes. The present results demonstrate that genetic deletion of OX2 receptors differentially modulates extracellular concentrations of distinct neurotransmitters in the somatodendritic region vs. a nerve terminal region of the orexinergic neurons. In the hypothalamus, an inhibitory role of the OX2 receptors in modulating basal concentrations of NE, ACh, and Hist was revealed, which probably accounts for the reduced responsiveness to KCl as well. In the PFC, the evoked release of the monoamines NE, 5-HT, and DA seems to be controlled negatively by OX2 receptors.


Subject(s)
Hypothalamus/physiology , Prefrontal Cortex/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Synaptic Transmission/physiology , Acetylcholine/metabolism , Animals , Dopamine/metabolism , Histamine/metabolism , Mice , Mice, Knockout , Microdialysis , Norepinephrine/metabolism , Orexin Receptors , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/genetics , Serotonin/metabolism , Synaptic Transmission/genetics
7.
J Pharmacol Exp Ther ; 336(1): 165-77, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20947638

ABSTRACT

The normalization of excessive glutamatergic neurotransmission through the activation of metabotropic glutamate 2 (mGlu2) receptors may have therapeutic potential in a variety of psychiatric disorders, including anxiety/depression and schizophrenia. Here, we characterize the pharmacological properties of N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a structurally novel, potent, and selective allosteric potentiator of human and rat mGlu2 receptors (EC(50) = 23 and 13 nM, respectively). THIIC produced anxiolytic-like efficacy in the rat stress-induced hyperthermia assay and the mouse stress-induced elevation of cerebellar cGMP and marble-burying assays. THIIC also produced robust activity in three assays that detect antidepressant-like activity, including the mouse forced-swim test, the rat differential reinforcement of low rate 72-s assay, and the rat dominant-submissive test, with a maximal response similar to that of imipramine. Effects of THIIC in the forced-swim test and marble burying were deleted in mGlu2 receptor null mice. Analysis of sleep electroencephalogram (EEG) showed that THIIC had a sleep-promoting profile with increased non-rapid eye movement (REM) and decreased REM sleep. THIIC also decreased the dark phase increase in extracellular histamine in the medial prefrontal cortex and decreased levels of the histamine metabolite tele-methylhistamine (t-MeHA) in rat cerebrospinal fluid. Collectively, these results indicate that the novel mGlu2-positive allosteric modulator THIIC has robust activity in models used to predict anxiolytic/antidepressant efficacy, substantiating, at least with this molecule, differentiation in the biological impact of mGlu2 potentiation versus mGlu2/3 orthosteric agonism. In addition, we provide evidence that sleep EEG and CSF t-MeHA might function as viable biomarker approaches to facilitate the translational development of THIIC and other mGlu2 potentiators.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Benzyl Compounds/pharmacology , Central Nervous System/drug effects , Central Nervous System/metabolism , Excitatory Amino Acid Agonists/pharmacology , Imidazoles/pharmacology , Receptors, Metabotropic Glutamate/agonists , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cell Line , Central Nervous System/chemistry , Cerebellum/chemistry , Cerebellum/drug effects , Cerebellum/metabolism , Drug Synergism , Humans , Male , Mice , Mice, Knockout , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/physiology
8.
Neuropharmacology ; 58(3): 632-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19951716

ABSTRACT

In the present study we demonstrated that ketamine, an NMDA antagonist and possible psychotomimetic, increases extracellular histamine (HA) in the rat brain. We then examined the ability of the group II mGlu receptor agonist LY379268 to modulate the ketamine evoked increases in HA release in three limbic brain regions. Ketamine (25 mg/kg) increased HA in the medial prefrontal cortex (mPFC), ventral hippocampus (vHipp) and the nucleus accumbens (NAc) shell. LY379268 administered alone was without effect on basal HA efflux in the mPFC or vHipp but modestly decreased HA efflux in the NAc shell. Administration of LY379268 (3 and 10 mg/kg) prior to ketamine significantly attenuated the HA response in the mPFC, vHipp and the NAc shell. The inhibitory effects of LY379268 in the mPFC were mimicked by the systemic administration of the mGlu2 receptor positive allosteric modulator CBiPES (60 mg/kg). Finally, local perfusion experiments revealed that the effects of LY379268 on ketamine evoked HA efflux appear to be mediated by mGlu2 receptors outside the PFC as the intra-mPFC perfusion of LY379268 (100 microM or 300 microM) failed to attenuate ketamine evoked increases in HA efflux. Together, these novel observations reveal an effect of ketamine on histaminergic transmission in limbic brain areas and provide further insight into the possible antipsychotic mechanism of action of mGlu2/3 receptor agonists.


Subject(s)
Histamine/metabolism , Ketamine/pharmacology , Limbic System/drug effects , Limbic System/metabolism , Receptors, Metabotropic Glutamate/metabolism , Amino Acids/pharmacology , Analysis of Variance , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclopropanes/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Electrochemistry/methods , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Indoles/pharmacology , Limbic System/anatomy & histology , Male , Microdialysis/methods , Quinoxalines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors
9.
Neuropharmacology ; 55(5): 743-54, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18602930

ABSTRACT

Selective inhibitors of the glycine transporter 1 (GlyT1) have been implicated in central nervous system disorders related to hypoglutamatergic function such as schizophrenia. The selective GlyT1 inhibitors ALX5407 (NFPS) and LY2365109 {[2-(4-benzo[1,3]dioxol-5-yl-2-tert-butylphenoxy)ethyl]-methylamino}-acetic acid increased cerebrospinal fluid levels of glycine and potentiated NMDA-induced increases in dialysate levels of neurotransmitters in the prefrontal cortex (PFC) and the striatum. However, higher doses produced both stimulatory and inhibitory effects on motor performance and impaired respiration, suggesting significant involvement of cerebellar and brain stem areas. A dual probe microdialysis study showed that ALX5407 transiently elevated extracellular levels of glycine in the PFC with more sustained increases in the cerebellum. In support of these findings, immuno-staining with pan-GlyT1 and GlyT1a antibodies showed a higher abundance of immunoreactivity in the brain stem/cerebellum as compared to the frontal cortical/hippocampal brain areas in four different species studied, including the mouse, rat, monkey and human. In addition, the inhibitory effects of ALX5407 on cerebellar levels of cGMP in the mouse could be reversed by the glycine A receptor antagonist strychnine but not the glycine B receptor antagonist L-701324. We propose that the adverse events seen with higher doses of ALX5407 and LY2365109 are the result of high GlyT1 inhibitory activity in caudal areas of the brain with sustained elevations of extracellular glycine. High levels of glycine in these brain areas may result in activation of strychnine-sensitive glycine A receptors that are inhibitory on both motor activity and critical brain stem functions such as respiration.


Subject(s)
Behavior, Animal/drug effects , Brain Chemistry/drug effects , Cerebral Cortex/drug effects , Corpus Striatum/drug effects , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Sarcosine/analogs & derivatives , Animals , Cell Line, Tumor , Cyclic GMP/metabolism , Dioxoles/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Glycine/metabolism , Humans , Male , Mice , Microdialysis/methods , Motor Activity/drug effects , Neuroblastoma , Neurotransmitter Agents/metabolism , Quinolones/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sarcosine/pharmacology , Time Factors
10.
Neuropharmacology ; 50(6): 755-60, 2006 May.
Article in English | MEDLINE | ID: mdl-16427661

ABSTRACT

Atomoxetine is a selective inhibitor of norepinephrine transporters and is currently being used in the pharmacotherapy of attention deficit/hyperactivity disorder (ADHD). We have previously shown that atomoxetine increased extracellular (EX) concentrations of norepinephrine and dopamine in prefrontal cortex, but unlike the psychostimulant methylphenidate, did not alter dopamine(EX) in nucleus accumbens or striatum. Using the in vivo microdialysis technique in rat, we investigated the effects of atomoxetine on norepinephrine(EX) and dopamine(EX) concentrations in several other brain regions and also evaluated the role of inhibitory autoreceptors on atomoxetine-induced increases of norepinephrine(EX) concentrations. Atomoxetine (3mg/kg i.p.) increased norepinephrine(EX) robustly in prefrontal cortex, occipital cortex, lateral hypothalamus, dorsal hippocampus and cerebellum, suggesting that norepinephrine(EX) is increased throughout the brain by atomoxetine. In lateral hypothalamus and occipital cortex where dopamine(EX) was quantifiable, atomoxetine did not increase dopamine(EX) concentrations, in contrast to parallel increases of norepinephrine(EX) and dopamine(EX) in prefrontal cortex, indicating a unique effect in prefrontal cortex. Administration of the alpha(2)-adrenergic antagonist idazoxan 1h after atomoxetine resulted in increases in prefrontal cortical norepinephrine efflux greater than either compound alone, indicating an attenuating effect of the adrenergic autoreceptors on norepinephrine efflux.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Brain/drug effects , Dopamine/metabolism , Extracellular Space/drug effects , Norepinephrine/metabolism , Propylamines/pharmacology , Analysis of Variance , Animals , Atomoxetine Hydrochloride , Male , Microdialysis/methods , Rats , Rats, Sprague-Dawley , Time Factors
11.
J Mol Neurosci ; 25(3): 239-50, 2005.
Article in English | MEDLINE | ID: mdl-15800377

ABSTRACT

The central mechanism of stress is poorly understood. This study was designed to examine how corticotropin-releasing factor (CRF) neurons, together with substance P (SP) receptors in the paraventricular hypothalamic nucleus (PVN), central nucleus of the amygdala (CeA), and locus coeruleus (LC), are affected by stress. Sprague-Dawley rats were restrained for 2 h. Animals were sacrificed by decapitation immediately after the 2-h restraint (the 0-h group) and 4, 24, or 48 h after restraint. Tissue sections were cut and collected on two sets of slides. Tissue sections of the first set were processed for studying CRF mRNA using 33P-labeled 60-mer oligonucleotide probe. Immediately adjacent tissue sections were processed for studying SP receptor-binding capacity using 125I-SP ligand. Quantitative results showed that CRF mRNAs in the PVN were significantly up-regulated at the 4- and 24-h stages, and they seemed not to be regulated by SP receptors. In addition, SP receptors in the CeA were up-regulated at the 24- and 48-h stages, whereas SP receptors were down-regulated in the LC at the same stages. In concert with the literature indicating SP antagonist's antidepressive effects, up-regulated SP receptors in the CeA might contribute to the development of stress-related depression.


Subject(s)
Brain/physiology , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Receptors, Neurokinin-1/metabolism , Stress, Physiological/physiopathology , Amygdala/physiology , Animals , Autoradiography , Feces , Locus Coeruleus/physiology , Male , Paraventricular Hypothalamic Nucleus/physiology , Phosphorus Radioisotopes , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Restraint, Physical , Stress, Physiological/metabolism
13.
Neuropsychopharmacology ; 27(5): 699-711, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12431845

ABSTRACT

The selective norepinephrine (NE) transporter inhibitor atomoxetine (formerly called tomoxetine or LY139603) has been shown to alleviate symptoms in Attention Deficit/Hyperactivity Disorder (ADHD). We investigated the mechanism of action of atomoxetine in ADHD by evaluating the interaction of atomoxetine with monoamine transporters, the effects on extracellular levels of monoamines, and the expression of the neuronal activity marker Fos in brain regions. Atomoxetine inhibited binding of radioligands to clonal cell lines transfected with human NE, serotonin (5-HT) and dopamine (DA) transporters with dissociation constants (K(i)) values of 5, 77 and 1451 nM, respectively, demonstrating selectivity for NE transporters. In microdialysis studies, atomoxetine increased extracellular (EX) levels of NE in prefrontal cortex (PFC) 3-fold, but did not alter 5-HT(EX) levels. Atomoxetine also increased DA(EX) concentrations in PFC 3-fold, but did not alter DA(EX) in striatum or nucleus accumbens. In contrast, the psychostimulant methylphenidate, which is used in ADHD therapy, increased NE(EX) and DA(EX) equally in PFC, but also increased DA(EX) in the striatum and nucleus accumbens to the same level. The expression of the neuronal activity marker Fos was increased 3.7-fold in PFC by atomoxetine administration, but was not increased in the striatum or nucleus accumbens, consistent with the regional distribution of increased DA(EX). We hypothesize that the atomoxetine-induced increase of catecholamines in PFC, a region involved in attention and memory, mediates the therapeutic effects of atomoxetine in ADHD. In contrast to methylphenidate, atomoxetine did not increase DA in striatum or nucleus accumbens, suggesting it would not have motoric or drug abuse liabilities.


Subject(s)
Attention Deficit Disorder with Hyperactivity/metabolism , Dopamine/metabolism , Norepinephrine/metabolism , Prefrontal Cortex/drug effects , Propylamines/pharmacology , Animals , Atomoxetine Hydrochloride , Attention Deficit Disorder with Hyperactivity/drug therapy , Drug Synergism , Humans , Male , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...