Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Lab Invest ; 103(2): 100007, 2023 02.
Article in English | MEDLINE | ID: mdl-37039149

ABSTRACT

Most human malignant neoplasms show loss of primary cilia (PC). However, PC are known to be retained and involved in tumorigenesis in some types of neoplasms. The PC status in lung carcinomas remains largely uninvestigated. In this study, we comprehensively assessed the PC status in lung carcinomas. A total of 492 lung carcinomas, consisting of adenocarcinomas (ACs) (n = 319), squamous cell carcinomas (SCCs) (n = 152), and small cell lung carcinomas (SCLCs) (n = 21), were examined by immunohistochemical analysis using an antibody against ARL13B, a marker of PC. The PC-positive rate was markedly higher in SCLCs (81.0%) than in ACs (1.6%) and SCCs (7.9%). We subsequently performed analyses to characterize the PC-positive lung carcinomas further. PC-positive lung carcinomas were more numerous and had longer PC than normal cells. The presence of PC in these cells was not associated with the phase of the cell cycle. We also found that the PC were retained even in metastases from PC-positive lung carcinomas. Furthermore, the hedgehog signaling pathway was activated in PC-positive lung carcinomas. Because ARL13B immunohistochemistry of lung carcinoids (n = 10) also showed a statistically significantly lower rate (10.0%) of PC positivity than SCLCs, we searched for a gene(s) that might be upregulated in PC-positive SCLCs compared with lung carcinoids, but not in PC-negative carcinomas. This search, and further cell culture experiments, identified HYLS1 as a gene possessing the ability to regulate ciliogenesis in PC-positive lung carcinomas. In conclusion, our findings indicate that PC are frequently present in SCLCs but not in non-SCLCs (ACs and SCCs) or lung carcinoids, and their PC exhibit various specific pathobiological characteristics. This suggests an important link between lung carcinogenesis and PC.


Subject(s)
Adenocarcinoma , Carcinoid Tumor , Carcinoma, Non-Small-Cell Lung , Carcinoma, Small Cell , Carcinoma, Squamous Cell , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Cilia/metabolism , Cilia/pathology , Carcinoma, Small Cell/genetics , Carcinoma, Small Cell/metabolism , Carcinoma, Small Cell/pathology , Hedgehog Proteins , Lung Neoplasms/genetics , Carcinoid Tumor/genetics , Carcinoid Tumor/metabolism , Carcinoid Tumor/pathology , Adenocarcinoma/metabolism , Lung/metabolism , Proteins
2.
J Pathol ; 254(5): 519-530, 2021 08.
Article in English | MEDLINE | ID: mdl-33931860

ABSTRACT

Primary cilia (PC) are non-motile, antenna-like structures on the cell surface. Many types of neoplasms exhibit PC loss, whereas in some neoplasms PC are retained and involved in tumourigenesis. To elucidate the PC status and characteristics of major salivary gland tumours (SGTs), we examined 100 major SGTs encompassing eight histopathological types by immunohistochemical analysis. PC were present in all (100%) of the pleomorphic adenomas (PAs), basal cell adenomas (BCAs), adenoid cystic carcinomas (AdCCs), and basal cell adenocarcinomas (BCAcs) examined, but absent in all (0%) of the Warthin tumours, salivary duct carcinomas, mucoepidermoid carcinomas, and acinic cell carcinomas examined. PC were also detected by electron-microscopic analysis using the NanoSuit method. It is worthy of note that the former category and latter category of tumours contained and did not contain a basaloid/myoepithelial differentiation component, respectively. The four types of PC-positive SGTs showed longer PC than normal and exhibited a characteristic distribution pattern of the PC in the ductal and basaloid/neoplastic myoepithelial components. Two PC-positive carcinomas (AdCC and BCAc) still possessed PC in their recurrent/metastatic sites. Interestingly, activation of the Hedgehog signalling pathway, shown by predominantly nuclear GLI1 expression, was significantly more frequently observed in PC-positive SGTs. Finally, we identified tau tubulin kinase 2 (TTBK2) as being possibly involved in the production of PC in SGTs. Taken together, our findings indicate that SGTs that exhibit basaloid/myoepithelial differentiation (PA, BCA, AdCC, and BCAc) are ciliated, and their PC exhibit tumour-specific characteristics, are involved in activation of the Hedgehog pathway, and are associated with TTBK2 upregulation, providing a significant and important link between SGT tumourigenesis and PC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Cilia/pathology , Salivary Gland Neoplasms/pathology , Adenoma/metabolism , Adenoma/pathology , Carcinoma/metabolism , Carcinoma/pathology , Cell Differentiation , Cilia/metabolism , Hedgehog Proteins/metabolism , Humans , Salivary Gland Neoplasms/metabolism
3.
Diagnostics (Basel) ; 10(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861386

ABSTRACT

BACKGROUND: We have recently developed the correlative light and electron microscopy of hematoxylin and eosin (H&E)-stained glass slides using the 'NanoSuit' method. The aim of this study is to explore the utility of the new NanoSuit-correlative light and electron microscopy method combined with scanning electron microscopy-energy dispersive X-ray spectroscopy elemental analysis for the diagnosis of lanthanum phosphate deposition in the H&E-stained glass slides. METHODS: Nine H&E-stained glass slides of the upper gastrointestinal tract mucosa containing the brown pigmented areas by light microscopic observation, which were suspected as lanthanum phosphate deposition, were observed and analyzed by scanning electron microscopy-energy dispersive X-ray spectroscopy using the NanoSuit-correlative light and electron microscopy method. RESULTS: In all nine slides, the new NanoSuit-correlative light and electron microscopy method combined with scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the accumulation of both lanthanum and phosphorus in the tissue area corresponding to the brown pigment deposition. In addition to the existence of lanthanum phosphate in the stomach and duodenum, known target organs, we observed deposition in the esophagus for the first time. Furthermore, we observed lanthanum phosphate deposition in the background mucosa of stomach containing primary adenocarcinoma. CONCLUSIONS: Scanning electron microscopy-energy dispersive X-ray spectroscopy analysis using the NanoSuit-correlative light and electron microscopy method is useful for the diagnosis of lanthanum phosphate deposition in the H&E-stained glass slides. Lanthanum phosphate deposition occurs not only in the stomach and duodenum but also in the esophagus.

4.
Cancers (Basel) ; 11(5)2019 May 24.
Article in English | MEDLINE | ID: mdl-31137743

ABSTRACT

DNA Polymerase Theta (POLQ) is a DNA polymerase involved in error-prone translesion DNA synthesis (TLS) and error-prone repair of DNA double-strand breaks (DSBs). In the present study, we examined whether abnormal POLQ expression may be involved in the pathogenesis of lung adenocarcinoma (LAC). First, we found overexpression of POLQ at both the mRNA and protein levels in LAC, using data from the Cancer Genome Atlas (TCGA) database and by immunohistochemical analysis of our LAC series. POLQ overexpression was associated with an advanced pathologic stage and an increased total number of somatic mutations in LAC. When H1299 human lung cancer cell clones overexpressing POLQ were established and examined, the clones showed resistance to a DSB-inducing chemical in the clonogenic assay and an increased frequency of mutations in the supF forward mutation assay. Further analysis revealed that POLQ overexpression was also positively correlated with Polo Like Kinase 4 (PLK4) overexpression in LAC, and that PLK4 overexpression in the POLQ-overexpressing H1299 cells induced centrosome amplification. Finally, analysis of the TCGA data revealed that POLQ overexpression was associated with an increased somatic mutation load and PLK4 overexpression in diverse human cancers; on the other hand, overexpressions of nine TLS polymerases other than POLQ were associated with an increased somatic mutation load at a much lower frequency. Thus, POLQ overexpression is associated with advanced pathologic stage, increased somatic mutation load, and PLK4 overexpression, the last inducing centrosome amplification, in LAC, suggesting that POLQ overexpression is involved in the pathogenesis of LAC.

5.
Free Radic Biol Med ; 131: 264-273, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30552997

ABSTRACT

The NTHL1 gene encodes DNA glycosylase, which is involved in base excision repair, and biallelic mutations of this gene result in NTHL1-associated polyposis (NAP), a hereditary disease characterized by colorectal polyposis and multiple types of carcinomas. However, no proper functional characterization of variant NTHL1 proteins has been done so far. Herein, we report functional evaluation of variant NTHL1 proteins to aid in the accurate diagnosis of NAP. First, we investigated whether it would be appropriate to use 5-hydroxyuracil (5OHU), an oxidation product of cytosine, for the evaluation. In the supF forward mutation assay, 5OHU caused an increase of the mutation frequency in human cells, and the C→T mutation was predominant among the 5OHU-induced mutations. In addition, in DNA cleavage activity assay, 5OHU was excised by NTHL1 as well as four other DNA glycosylases (SMUG1, NEIL1, TDG, and UNG2). When human cells overexpressing the five DNA glycosylases were established, it was found that each of the five DNA glycosylases, including NTHL1, had the ability to suppress 5OHU-induced mutations. Based on the above results, we performed functional evaluation of eight NTHL1 variants using 5OHU-containing DNA substrate or shuttle plasmid. The DNA cleavage activity assay showed that the variants of NTHL1, Q90X, Y130X, R153X, and Q287X, but not R19Q, V179I, V217F, or G286S, showed defective repair activity for 5OHU and two other oxidatively damaged bases. Moreover, the supF forward mutation assay showed that the four truncated-type NTHL1 variants showed a reduced ability to suppress 5OHU-induced mutations in human cells. These results suggest that the NTHL1 variants Q90X, Y130X, R153X, and Q287X, but not R19Q, V179I, V217F, or G286S, were defective in 5OHU repair and the alleles encoding them were considered to be pathogenic for NAP.


Subject(s)
DNA Repair , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Uracil/analogs & derivatives , Adenomatous Polyposis Coli/diagnosis , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/metabolism , Alleles , Cell Line, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , DNA Cleavage , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Mutational Analysis , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gene Expression , Humans , Mutation , Uracil/metabolism , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
6.
Pathol Oncol Res ; 24(2): 439-444, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28470573

ABSTRACT

BSND protein, which is involved in chloride transport, is expressed in normal kidney and the inner ear and is known as an immunohistochemical marker for chromophobe renal cell carcinoma (RCC) and renal oncocytoma; however, other organs and tumor types exhibiting BSND expression have not yet been reported. In this study, we investigated the expression of BSND using data from the Cancer Genome Atlas (TCGA) database and by performing immunohistochemical analyses. As a result, we found that BSND was also expressed in the striated duct cells of normal salivary glands. Next, BSND expression was examined immunohistochemically in 7 types of salivary gland tumors, and BSND positivity was found in Warthin's tumor (25 out of 25 cases; 100%) and oncocytoma (4/4; 100%), both of which are usually classified as oncocytic tumors, whereas BSND negativity was observed for pleomorphic adenoma (0/11), adenoid cystic carcinoma (0/7), acinic cell carcinoma (0/6), mucoepidermoid carcinoma (0/6), and salivary duct carcinoma (0/5). Finally, the expression of BSND mRNA in 30 types of tumors other than chromophobe RCC and salivary gland tumors was examined using data from the TCGA database, but none of these tumors exhibited BSND expression. These results suggest that BSND is expressed only in normal salivary glands and oncocytic salivary gland tumors such as Warthin's tumor and oncocytoma in addition to the two known organs and the two known renal tumor types mentioned above. The selective expression pattern of BSND suggests that BSND is an excellent novel immunohistochemical marker for oncocytic salivary gland tumors.


Subject(s)
Adenoma, Oxyphilic/diagnosis , Biomarkers, Tumor/analysis , Chloride Channels/biosynthesis , Salivary Gland Neoplasms/diagnosis , Adenoma, Oxyphilic/metabolism , Adult , Aged , Chloride Channels/analysis , Female , Humans , Immunohistochemistry , Male , Middle Aged , Salivary Gland Neoplasms/metabolism
7.
Oxid Med Cell Longev ; 2017: 7308501, 2017.
Article in English | MEDLINE | ID: mdl-29098062

ABSTRACT

To date, the types of mutations caused by 8-bromoguanine (8BrG), a major base lesion induced by reactive brominating species during inflammation, in human cells and the 8BrG repair system remain largely unknown. In this study, we performed a supF forward mutation assay using a shuttle vector plasmid containing a single 8BrG in three kinds of human cell lines and revealed that 8BrG in DNA predominantly induces a G → T mutation but can also induce G → C, G → A, and delG mutations in human cells. Next, we tested whether eight kinds of DNA glycosylases (MUTYH, MPG, NEIL1, OGG1, SMUG1, TDG, UNG2, and NTHL1) are capable of repairing 8BrG mispairs with any of the four bases using a DNA cleavage activity assay. We found that both the SMUG1 protein and the TDG protein exhibit DNA glycosylase activity against thymine mispaired with 8BrG and that the MUTYH protein exhibits DNA glycosylase activity against adenine mispaired with 8BrG. These results suggest that 8BrG induces some types of mutations, chiefly a G → T mutation, in human cells, and some DNA glycosylases are involved in the repair of 8BrG.


Subject(s)
Guanine/analogs & derivatives , Cell Line, Tumor , Guanine/pharmacology , Guanine/therapeutic use , Humans , Mutation , Transfection
8.
Mol Carcinog ; 56(8): 1984-1991, 2017 08.
Article in English | MEDLINE | ID: mdl-28277612

ABSTRACT

Human WDR62, which is localized in the cytoplasm including the centrosome, is known to be responsible for primary microcephaly; however, the role of WDR62 abnormality in cancers remains largely unknown. In this study, we aimed to reveal the pathological role of WDR62 abnormality in lung adenocarcinoma (LAC). We first examined the WDR62 mRNA expression level of LAC (n = 64) using a QRT-PCR analysis and found that WDR62 mRNA transcripts were significantly overexpressed in LAC (P = 0.0432, Wilcoxon matched pairs test). An immunohistochemical analysis for LAC (n = 237) showed that WDR62 proteins were also significantly overexpressed in LAC (P < 0.0001, Mann-Whitney U test). A Kaplan-Meier analysis demonstrated that patients with LAC who exhibit WDR62 overexpression have a short overall survival (P = 0.0378, log-rank test), and a multivariate analysis revealed that WDR62 overexpression was an independent predictor of a poor survival outcome among LAC patients (hazard ratio, 2.032; 95% confidence interval, 1.071-3.777; P = 0.0305). Next, we examined the functional effect of WDR62 overexpression on the lung cancer cell line H1299. WDR62-overexpressing lung cancer cells exhibited an increase in cell growth. Moreover, the concurrent overexpression of WDR62 and TPX2, a WDR62-interacting protein that is also overexpressed in LAC, induced centrosome amplification in the lung cells. Finally, we disclosed that the concurrent overexpression of WDR62 and TPX2 is common in diverse human cancers, using data from the Cancer Genome Atlas. These results suggested that WDR62 overexpression is associated with a poor prognosis in patients with LAC and leads to an increase in the malignant potential of lung cells.


Subject(s)
Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung/pathology , Nerve Tissue Proteins/genetics , Up-Regulation , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Biomarkers, Tumor/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Female , Humans , Kaplan-Meier Estimate , Lung Neoplasms/pathology , Male , Microtubule-Associated Proteins/genetics , Middle Aged , Nuclear Proteins/genetics , Prognosis
9.
Mol Carcinog ; 56(2): 781-788, 2017 02.
Article in English | MEDLINE | ID: mdl-27253753

ABSTRACT

8-Hydroxyguanine (8OHG), a major oxidative DNA lesion, is known to accumulate in prostate cancer; however, the status of one of its repair enzymes, MUTYH, in prostate cancer remains to be elucidated. In this study, we showed that the expression levels of MUTYH mRNA and protein were significantly lower in prostate cancer than in non-cancerous prostatic tissue by examining two independent, publicly available databases and by performing an immunohistochemical analysis of prostate cancer specimens obtained at our hospital, respectively. About two-thirds of the prostate cancers exhibited a reduced MUTYH expression. When the effect of reduced MUTYH expression in prostate adenocarcinoma on the somatic mutation load was examined using data from the Cancer Genome Atlas (TCGA) database, the numbers of total somatic mutations and somatic G:C to T:A mutations were significantly higher in the reduced MUTYH expression group than in the other group (P < 0.0001 and P = 0.0013, respectively). To determine the reason why reduced MUTYH expression leads to somatic mutation loads in prostate adenocarcinoma, we compared the DNA repair capacities between PC-3 prostatic cell line derived clones with different MUTYH expression levels. Both the capacities to cleave DNA containing adenine:8OHG mispairs and to suppress mutations caused by 8OHG were significantly lower in prostatic cell lines with lower MUTYH expression than in prostatic cell lines with higher MUTYH expression. These results suggested that reduced MUTYH expression is associated with somatic mutation loads via a reduction in DNA repair capacity in prostate adenocarcinoma. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adenocarcinoma/genetics , DNA Glycosylases/genetics , DNA Repair , Down-Regulation , Mutation , Prostate/pathology , Prostatic Neoplasms/genetics , Adenocarcinoma/pathology , Cell Line, Tumor , DNA Glycosylases/analysis , Gene Expression Regulation, Neoplastic , Humans , Male , Prostate/metabolism , Prostatic Neoplasms/pathology , RNA, Messenger/genetics
10.
Oxid Med Cell Longev ; 2016: 1546392, 2016.
Article in English | MEDLINE | ID: mdl-27042257

ABSTRACT

The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load.


Subject(s)
DNA Glycosylases/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Mutation , N-Glycosyl Hydrolases/genetics , Neoplasms/genetics , Aged , Cell Line, Tumor , DNA Glycosylases/metabolism , DNA Methylation , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Humans , Male , Middle Aged , N-Glycosyl Hydrolases/metabolism , Neoplasms/metabolism , Neoplasms/pathology
11.
Hum Mutat ; 37(4): 350-3, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26694661

ABSTRACT

Biallelic germline mutations of MUTYH, the gene encoding DNA glycosylase, cause MUTYH-associated polyposis (MAP), characterized by multiple colorectal adenomas and carcinoma(s). However, a considerable number of MUTYH variants are still functionally uncharacterized. Herein, we report the results of functional evaluation of nine missense-type MUTYH variant proteins in the Japanese population. The DNA glycosylase activity and ability to suppress mutations caused by 8-hydroxyguanine, an oxidized form of guanine, were examined for the nine variants of type 2 MUTYH, a nuclear form of the enzyme, by DNA cleavage activity assay and supF forward mutation assay, respectively. Both activities were severely defective in the p.N210S MUTYH type 2 variant corresponding to p.N238S in the reference MUTYH form and partially defective in p.R219G variant corresponding to p.R247G, but nearly fully retained in seven other variants examined. Our results suggest that p.N238S and p.R247G are likely to be pathogenic alleles for MAP.


Subject(s)
Asian People/genetics , DNA Glycosylases/genetics , Genetic Association Studies , Mutation, Missense , Alleles , Amino Acid Substitution , Cell Line , DNA Glycosylases/metabolism , Enzyme Activation , Genotype , Germ-Line Mutation , Humans , Japan
12.
Oncol Rep ; 34(2): 727-38, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26035073

ABSTRACT

Spindle assembly abnormal protein 6 homolog (SASS6) plays an important role in the regulation of centriole duplication. To date, the genetic alteration of SASS6 has not been reported in human cancers. In the present study, we examined whether SASS6 expression is abnormally regulated in colorectal cancers (CRCs). Increased SASS6 mRNA and protein expression levels were observed in 49 (60.5%) of the 81 primary CRCs and 11 (57.9%) of the 19 primary CRCs, respectively. Moreover, the upregulation of SASS6 mRNA expression was statistically significant (P=0.0410). Next, using DLD-1 colon cancer cells inducibly expressing SASS6, SASS6 overexpression was shown to induce centrosome amplification, mitotic abnormalities such as chromosomal misalignment and lagging chromosome, and chromosomal numerical changes. Furthermore, SASS6 overexpression was associated with anaphase bridge formation, a type of mitotic structural abnormality, in primary CRCs (P<0.01). SASS6 upregulation in colon cancer was also revealed in the Cancer Genome Atlas (TCGA) data and was shown to be an independent predictor of poor survival (multivariate analysis: hazard ratio, 2.805; 95% confidence interval, 1.244­7.512; P=0.0112). Finally, further analysis of the TCGA data demonstrated SASS6 upregulation in a modest manner in 8 of 11 cancer types other than colon cancer, and SASS6 upregulation was found to be associated with a poor survival outcome in patients with kidney renal cell carcinoma and lung adenocarcinoma. Our present findings revealed that the upregulation of SASS6 expression is involved in the pathogenesis of CRC and is associated with a poor prognosis among patients with colon cancer. They also suggest that SASS6 upregulation is a genetic abnormality relatively common in human cancer.


Subject(s)
Cell Cycle Proteins/biosynthesis , Chromosome Aberrations , Colorectal Neoplasms/genetics , Prognosis , Adult , Aged , Cell Cycle Proteins/genetics , Colorectal Neoplasms/pathology , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Mitosis/genetics , Neoplasm Staging , RNA, Messenger/biosynthesis
13.
Gene ; 571(1): 33-42, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26095805

ABSTRACT

Human NEIL1 protein is a DNA glycosylase known to be involved in the repair of oxidized DNA lesions. A c.C844T germline variant of the NEIL1 gene has recently been identified in the Japanese population, however, the p.Q282Stop-type protein produced from this variant gene has not yet been characterized. In this study to determine whether the NEIL1 c.C844T variant might be a defective allele, we investigated the subcellular localization of the p.Q282Stop-type protein and its ability to suppress the development of mutations in mammalian cells. In contrast to the nuclear localization of wild-type (WT) NEIL1, the p.Q282Stop-type protein tagged with GFP or FLAG was localized predominantly in the cytoplasm of human H1299 cells. Mutant forms of the putative nuclear localization signal (NLS, amino acid sequences 359 to 378) of NEIL1-GFP resulted in predominant cytoplasmic localization of the mutants, suggesting that the abnormal localization of p.Q282Stop-type NEIL1 may also be caused by a loss of the putative NLS in the protein. Next, V79 mammalian cell lines inducibly expressing WT NEIL1 or p.Q282Stop-type NEIL1 were established using the piggyBac transposon vector system, and the mutation frequency was compared between the cell lines by HPRT assay. The frequency of mutations induced by glucose oxidase, an oxidative stress inducer, was higher in the p.Q282Stop-type NEIL1-transposed cells than that in the WT NEIL1-transposed cells. Finally, the Cancer Genome Atlas (TCGA) data showed an increased number of somatic mutations in primary carcinomas containing a truncating NEIL1 mutation. These results suggest that p.Q282Stop-type NEIL1 is predominantly localized in the cytoplasm, possibly due to a loss of the NLS, and possesses a reduced ability to suppress the onset of mutations, both findings suggesting that NEIL1 c.C844T is a defective allele.


Subject(s)
Codon, Nonsense/genetics , Cytoplasm/enzymology , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Animals , Blotting, Western , Cell Line , Cell Line, Tumor , Cell Nucleus/enzymology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Fluorescence , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Point Mutation
14.
Medicine (Baltimore) ; 94(24): e989, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26091477

ABSTRACT

Differentiating between chromophobe renal cell carcinoma (RCC) and other RCC subtypes can be problematic using routine light microscopy. This study aimed to identify novel immunohistochemical markers useful for a differential diagnosis between chromophobe RCC and other RCC subtypes. We selected 3 genes (including BSND and ATP6V1G3) that showed specific transcriptional expression in chromophobe RCC using expression data (n = 783) from The Cancer Genome Atlas (TCGA) database. A subsequent immunohistochemical examination of 186 RCCs obtained in our patient series resulted in a strong diffuse positivity of BSND and ATP6V1G3 proteins (both of which are involved in the regulation of membrane transport) in all the chromophobe RCC specimens (23/23 cases, 100%) but not in the clear cell RCC specimens (0/153 cases, 0%) or the papillary RCC specimens (0/10 cases, 0%). BSND and ATP6V1G3 protein expressions were also detected in renal oncocytoma (13/14 cases, 92.9%) and in the distal nephron, including the collecting duct, in the normal kidney. A computational analysis of TCGA data suggested that DNA methylation was involved in the differential expression pattern of both genes among RCC subtypes. Finally, an immunohistochemical analysis showed lung carcinomas were negative (0/85 cases, 0%) for the expression of both proteins. These results suggest that BSND and ATP6V1G3 are excellent novel immunohistochemical markers for differentiating between chromophobe RCC and other subtypes of RCC, including clear cell and papillary RCCs.


Subject(s)
Carcinoma, Renal Cell/pathology , Chloride Channels/biosynthesis , Kidney Neoplasms/pathology , Vacuolar Proton-Translocating ATPases/biosynthesis , Biomarkers , Diagnosis, Differential , Fibrillins , Gene Expression , Humans , Immunochemistry , Microfilament Proteins/biosynthesis , Sequence Analysis, RNA
15.
Pathol Oncol Res ; 21(3): 759-64, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25576211

ABSTRACT

A CD44-SLC1A2 fusion has recently been discovered in a subset of primary gastric cancers, and an APIP-SLC1A2 fusion has been described in a colon cancer cell line (SNU-C1); however, whether such SLC1A2 fusions occur in primary colorectal cancer (CRC) and whether such fusions are specific for gastrointestinal cancers remain uncertain. In the present study, we examined 90 primary CRCs and 112 primary non-small cell lung cancers (NSCLCs) for CD44-SLC1A2 and APIP-SLC1A2 fusion transcripts using RT-PCR and subsequent sequencing analyses. Although the expression of both types of SLC1A2 fusion transcripts was not detected in any of the NSCLCs, the expression of CD44-SLC1A2, but not the APIP-SLC1A2 fusion transcript, was detected in one (1.1 %) CRC. The CD44-SLC1A2 fusion transcript was expressed in cancerous tissue but not in corresponding non-cancerous tissue, and the fusion occurred between exon 1 of CD44 and exon 2 of SLC1A2; it was expected that a slightly truncated but functional SLC1A2 protein would be produced under the CD44 promoter. A quantitative RT-PCR analysis revealed that SLC1A2 mRNA expression was upregulated in CRC containing SLC1A2 fusion transcripts, while it was downregulated in most other CRCs. The SLC1A2 fusion-positive carcinoma was located on the right-side of colon, was a mucinous adenocarcinoma, was immunohistochemically negative for MSH2 mismatch repair protein, and contained no APC or KRAS mutations. Together, these results suggest that the expression of SLC1A2 fusion transcripts is related to a subset of primary CRCs and may contribute to the elucidation of the characteristics of SLC1A2 fusion-positive CRCs in the future.


Subject(s)
Adenocarcinoma, Mucinous/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/genetics , Gene Fusion/genetics , Glutamate Plasma Membrane Transport Proteins/genetics , Hyaluronan Receptors/genetics , Lung Neoplasms/genetics , Adenocarcinoma, Mucinous/secondary , Aged , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/secondary , Colorectal Neoplasms/pathology , Excitatory Amino Acid Transporter 2 , Female , Follow-Up Studies , Glutamate Plasma Membrane Transport Proteins/metabolism , Humans , Hyaluronan Receptors/metabolism , Immunoenzyme Techniques , Lung Neoplasms/pathology , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Staging , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
16.
Dis Markers ; 2014: 619273, 2014.
Article in English | MEDLINE | ID: mdl-25548429

ABSTRACT

Recent progress in targeted therapy for lung cancer has revealed that accurate differential diagnosis between squamous cell carcinoma (SCC) and adenocarcinoma (ADC) of the lung is essential. To identify a novel immunohistochemical marker useful for differential diagnosis between the two subtypes of lung cancer, we first selected 24 SCC-specific genes and 6 ADC-specific genes using data (case number, 980) from the Cancer Genome Atlas (TCGA) database. Among the genes, we chose the CLCA2 gene, which is involved in chloride conductance and whose protein expression in lung cancer is yet to be characterized, and evaluated its protein expression status in 396 cases of primary lung cancer at Hamamatsu University Hospital. Immunohistochemical analysis revealed a significantly higher CLCA2 expression level in the SCCs than in the ADCs (P < 0.0001) and also a significantly higher frequency of CLCA2 protein expression in the SCCs (104/161, 64.6%) as compared with that in the ADCs (2/235, 0.9%) (P < 0.0001; sensitivity 64.6%, specificity 99.1%). The CLCA2 protein expression status was associated with the histological tumor grade in the SCCs. These results suggest that CLCA2 might be a novel excellent immunohistochemical marker for differentiating between primary SCC and primary ADC of the lung.


Subject(s)
Adenocarcinoma/diagnosis , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/diagnosis , Chloride Channels/metabolism , Lung Neoplasms/diagnosis , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/mortality , Chloride Channels/genetics , Diagnosis, Differential , Female , Gene Expression , Humans , Kaplan-Meier Estimate , Lung/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Middle Aged , Tissue Array Analysis
17.
Oxid Med Cell Longev ; 2014: 617351, 2014.
Article in English | MEDLINE | ID: mdl-24799981

ABSTRACT

PURPOSE: The biallelic inactivation of the 8-hydroxyguanine repair gene MUTYH leads to MUTYH-associated polyposis (MAP), which is characterized by colorectal multiple polyps and carcinoma(s). However, only limited information regarding MAP in the Japanese population is presently available. Since early-onset colorectal cancer (CRC) is a characteristic of MAP and might be caused by the inactivation of another 8-hydroxyguanine repair gene, OGG1, we investigated whether germline MUTYH and OGG1 mutations are involved in early-onset CRC in Japanese patients. METHODS: Thirty-four Japanese patients with early-onset CRC were examined for germline MUTYH and OGG1 mutations using sequencing. RESULTS: Biallelic pathogenic mutations were not found in any of the patients; however, a heterozygous p.Arg19∗ MUTYH variant and a heterozygous p.Arg109Trp MUTYH variant were detected in one patient each. The p.Arg19∗ and p.Arg109Trp corresponded to p.Arg5∗ and p.Arg81Trp, respectively, in the type 2 nuclear-form protein. The defective DNA repair activity of p.Arg5∗ is apparent, while that of p.Arg81Trp has been demonstrated using DNA cleavage and supF forward mutation assays. CONCLUSION: These results suggest that biallelic MUTYH or OGG1 pathogenic mutations are rare in Japanese patients with early-onset CRC; however, the p.Arg19∗ and p.Arg109Trp MUTYH variants are associated with functional impairments.


Subject(s)
DNA Glycosylases/genetics , DNA Repair , Guanine/analogs & derivatives , Adult , Alleles , Amino Acid Sequence , Animals , Asian People , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Glycosylases/metabolism , Female , Gene Frequency , Genotype , Guanine/chemistry , Guanine/metabolism , Heterozygote , Humans , Male , Molecular Sequence Data , Mutation , Phosphorylation
18.
Mol Biol Rep ; 41(8): 5375-84, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24847761

ABSTRACT

R-spondin (RSPO) gene fusions have recently been discovered in a subset of human colorectal cancer (CRC) in the U.S. population; however, whether the fusion is recurrent in CRC arising in patients from the other demographic areas and whether it is specific for CRC remain uncertain. In this study, we examined 75 primary CRCs and 121 primary lung cancers in the Japanese population for EIF3E-RSPO2 and PTPRK-RSPO3 fusion transcripts using RT-PCR and subsequent sequencing analyses. Although the expression of EIF3E-RSPO2 and PTPRK-RSPO3 was not detected in any of the lung carcinomas, RSPO fusions were detected in three (4%) of the 75 CRCs. Two CRCs contained EIF3E-RSPO2 fusion transcripts, and another CRC contained PTPRK-RSPO3 fusion transcripts. Interestingly, in one of the two EIF3E-RSPO2 fusion-positive CRCs, a novel fusion variant form of EIF3E-RSPO2 was identified: exon 1 of EIF3E was connected to exon 2 of RSPO2 by a 351-bp insertion. A quantitative RT-PCR analysis revealed that RSPO mRNA expression was upregulated in the three CRCs containing RSPO fusion transcripts, while it was downregulated in nearly all of the other CRCs. An immunohistochemical analysis and a mutational analysis revealed that the RSPO fusion-containing CRC had a CDX2 cell lineage, was positive for mismatch repair protein expression, and had the wild-type APC allele. Finally, the forced expression of RSPO fusion proteins were shown to endow colorectal cells with an increased growth ability. These results suggest that the expression of RSPO fusion transcripts is related to a subset of CRCs arising in the Japanese population.


Subject(s)
Asian People/genetics , Colorectal Neoplasms/genetics , Gene Fusion , Intercellular Signaling Peptides and Proteins/genetics , Thrombospondins/genetics , Aged , Cell Line, Tumor , Cell Proliferation , DNA Mismatch Repair , DNA Mutational Analysis , Exons , Female , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/genetics , Male , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thrombospondins/metabolism
19.
Oncol Rep ; 31(3): 1219-24, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24452392

ABSTRACT

The recent discovery of mutations and fusions of oncokinase genes in a subset of lung cancers (LCs) is of considerable clinical interest, since LCs containing such mutations or fusion transcripts are reportedly sensitive to kinase inhibitors. To better understand the role of the recently identified fibroblast growth factor receptor 3 (FGFR3) mutations and fusions in pulmonary carcinogenesis, we examined 214 LCs for mutations in the mutation cluster region of the FGFR3 gene using sequencing analysis. We also examined 190 LCs for the FGFR3-TACC3 and FGFR3-BAIAP2L1 fusion transcripts using reverse transcription-polymerase chain reaction (RT-PCR) analysis. Although the expression of FGFR3-TACC3 and FGFR3-BAIAP2L1 fusion transcripts was not detected in any of the carcinomas, somatic FGFR3 mutations were detected in two (0.9%) LCs. The two mutations were the same, i.e., p.R248H. That was a novel mutation occurring in the same codon as p.R248C, for which an oncogenic potential has previously been shown. Increased FGFR3 expression was shown in the two LCs containing the FGFR3 p.R248H mutation using qPCR. Histologically, both carcinomas were squamous cell carcinomas, therefore the incidence of the FGFR3 mutation among the squamous cell carcinoma cases was calculated as 3.2% (2/63). When we examined other co-occurring genetic abnormalities, one case exhibited a p53 p.R273C mutation, while the other case exhibited PIK3CA and SOX2 amplifications. The above results suggest that an FGFR3 p.R248H mutation is involved in the carcinogenesis of a subset of LCs and may contribute to the elucidation of the characteristics of FGFR3 mutation-positive LCs in the future.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Aged , Base Sequence , DNA Mutational Analysis , Female , Gene Amplification , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Mutation, Missense
SELECTION OF CITATIONS
SEARCH DETAIL
...