Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Shock ; 59(2): 318-325, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36731028

ABSTRACT

ABSTRACT: Background: Obesity increases the risk for morbidity and mortality after trauma. These complications are associated with profound vascular damage. Traumatic hemorrhage acutely attenuates vascular responsiveness, but the impact of obesity on this dysfunction is not known. The local inflammatory response in vascular cells is also unknown. We hypothesized that obesity potentiates trauma-induced vascular inflammation and dysfunction. Methods: Male Sprague-Dawley rats (~250 g) were fed normal chow (NC; 13.5% kcal fat, n = 20) or high-fat (HF; 60% kcal fat, n = 20) diets for 6 to 8 weeks. Under anesthesia, hemorrhage was induced by a mesenteric artery laceration, a Grade V splenic injury, and hypotension (MAP = 30-40 mm Hg) for 30 minutes. Vascular responsiveness was assessed ex vivo in isolated mesenteric arteries prehemorrhage and posthemorrhage. Gene expression for IL-1ß, and IL-6, prooxidant nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), and α-adrenergic receptor were assessed in carotid artery endothelial cells (ECs) and non-ECs (media + adventitia). Results: In NC rats, hemorrhage attenuated norepinephrine-induced vasoconstriction and endothelium-dependent vasodilation to acetylcholine. In HF rats, baseline norepinephrine-induced vasoconstriction was attenuated compared with NC, but vasoconstriction and endothelium-dependent vasodilation did not change prehemorrhage to posthemorrhage. Hemorrhage led to elevated IL-1ß gene expression in ECs and elevated IL1ß, IL-6, NOX2, and α-adrenergic receptor gene expression in the media + adventitia compared with sham. HF rats had greater EC IL-1 ß and NOX2 gene expression compared with NC rats. The hemorrhage-induced elevation of IL-1ß in the media + adventitia was greatest in HF rats. Conclusion: Traumatic hemorrhage attenuates vascular responsiveness and induces vascular inflammation. The attenuated vascular responsiveness after hemorrhage is absent in obese rats, while the elevated vascular inflammation persists. A HF diet amplifies the arterial inflammation after hemorrhage. Altered vascular responsiveness and vascular inflammation may contribute to worse outcomes in obese trauma patients.


Subject(s)
Endothelial Cells , Hypotension , Rats , Male , Animals , Interleukin-6/metabolism , Rats, Sprague-Dawley , Obesity/complications , Vasodilation/physiology , Hemorrhage/complications , Endothelium, Vascular/metabolism , Norepinephrine , Inflammation/metabolism , Receptors, Adrenergic, alpha
2.
Nature ; 594(7861): 100-105, 2021 06.
Article in English | MEDLINE | ID: mdl-33981041

ABSTRACT

Ageing of the immune system, or immunosenescence, contributes to the morbidity and mortality of the elderly1,2. To define the contribution of immune system ageing to organism ageing, here we selectively deleted Ercc1, which encodes a crucial DNA repair protein3,4, in mouse haematopoietic cells to increase the burden of endogenous DNA damage and thereby senescence5-7 in the immune system only. We show that Vav-iCre+/-;Ercc1-/fl mice were healthy into adulthood, then displayed premature onset of immunosenescence characterized by attrition and senescence of specific immune cell populations and impaired immune function, similar to changes that occur during ageing in wild-type mice8-10. Notably, non-lymphoid organs also showed increased senescence and damage, which suggests that senescent, aged immune cells can promote systemic ageing. The transplantation of splenocytes from Vav-iCre+/-;Ercc1-/fl or aged wild-type mice into young mice induced senescence in trans, whereas the transplantation of young immune cells attenuated senescence. The treatment of Vav-iCre+/-;Ercc1-/fl mice with rapamycin reduced markers of senescence in immune cells and improved immune function11,12. These data demonstrate that an aged, senescent immune system has a causal role in driving systemic ageing and therefore represents a key therapeutic target to extend healthy ageing.


Subject(s)
Aging/immunology , Aging/physiology , Immune System/immunology , Immune System/physiology , Immunosenescence/immunology , Immunosenescence/physiology , Organ Specificity/immunology , Organ Specificity/physiology , Aging/drug effects , Aging/pathology , Animals , DNA Damage/immunology , DNA Damage/physiology , DNA Repair/immunology , DNA Repair/physiology , DNA-Binding Proteins/genetics , Endonucleases/genetics , Female , Healthy Aging/immunology , Healthy Aging/physiology , Homeostasis/immunology , Homeostasis/physiology , Immune System/drug effects , Immunosenescence/drug effects , Male , Mice , Organ Specificity/drug effects , Rejuvenation , Sirolimus/pharmacology , Spleen/cytology , Spleen/transplantation
3.
Aging Cell ; 19(3): e13094, 2020 03.
Article in English | MEDLINE | ID: mdl-31981461

ABSTRACT

Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence-associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1-XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15-fold in peripheral lymphocytes from 4- to 5-month-old Ercc1-/∆ and 2.5-year-old wild-type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4- to 5-month-old Ercc1-/∆ mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence-associated ß-galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1-/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1-/∆ and aged WT mice support the conclusion that the DNA repair-deficient mice accurately model the age-related accumulation of senescent cells, albeit six-times faster.


Subject(s)
Aging/metabolism , Cellular Senescence/genetics , DNA Damage/genetics , DNA-Binding Proteins/deficiency , Endonucleases/deficiency , Lung/metabolism , Pancreas/metabolism , Thymus Gland/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Repair/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organ Specificity , RNA, Messenger/genetics , Sex Factors , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...