Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Cells ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864277

ABSTRACT

The potential involvement of the gut microbiota in metabolic dysfunction-associated steatohepatitis (MASH) pathogenesis has garnered increasing attention. In this study, we elucidated the link between high-fat/cholesterol/cholate-based (iHFC)#2 diet-induced MASH progression and gut microbiota in C57BL/6 mice using antibiotic treatments. Treatment with vancomycin (VCM), which targets gram-positive bacteria, exacerbated the progression of liver damage, steatosis, and fibrosis in iHFC#2-fed C57BL/6 mice. The expression levels of inflammation- and fibrosis-related genes in the liver significantly increased after VCM treatment for 8 weeks. F4/80+ macrophage abundance increased in the livers of VCM-treated mice. These changes were rarely observed in the iHFC#2-fed C57BL/6 mice treated with metronidazole, which targets anaerobic bacteria. A16S rRNA sequence analysis revealed a significant decrease in α-diversity in VCM-treated mice compared with that in placebo-treated mice, with Bacteroidetes and Firmicutes significantly decreased, while Proteobacteria and Verrucomicrobia increased markedly. Finally, VCM treatment dramatically altered the level and balance of bile acid (BA) composition in iHFC#2-fed C57BL/6 mice. Thus, the VCM-mediated exacerbation of MASH progression depends on the interaction between the gut microbiota, BA metabolism, and inflammatory responses in the livers of iHFC#2-fed C57BL/6 mice.

2.
Inflamm Res ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619583

ABSTRACT

BACKGROUND: Tsumura-Suzuki non-obese (TSNO) mice exhibit a severe form of metabolic dysfunction-associated steatohepatitis (MASH) with advanced liver fibrosis upon feeding a high-fat/cholesterol/cholate-based (iHFC) diet. Another ddY strain, Tsumura-Suzuki diabetes obese (TSOD) mice, are impaired in the progression of iHFC diet-induced MASH. AIM: To elucidate the underlying mechanisms contributing to the differences in MASH progression between TSNO and TSOD mice. METHODS: We analyzed differences in the immune system, gut microbiota, and bile acid metabolism in TSNO and TSOD mice fed with a normal diet (ND) or an iHFC diet. RESULTS: TSOD mice had more anti-inflammatory macrophages in the liver than TSNO mice under ND feeding, and were impaired in the iHFC diet-induced accumulation of fibrosis-associated macrophages and formation of histological hepatic crown-like structures in the liver. The gut microbiota of TSOD mice also exhibited a distinct community composition with lower diversity and higher abundance of Akkermansia muciniphila compared with that in TSNO mice. Finally, TSOD mice had lower levels of bile acids linked to intestinal barrier disruption under iHFC feeding. CONCLUSIONS: The dynamics of liver macrophage subsets, and the compositions of the gut microbiota and bile acids at steady state and post-onset of MASH, had major impacts on MASH development.

3.
Biomedicines ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37893033

ABSTRACT

Macrophages are critical for the development of non-alcoholic steatohepatitis (NASH). Our previous findings in TSNO mouse livers showed that an iHFC (high-fat/cholesterol/cholate) diet induced liver fibrosis similar to human NASH and led to the accumulation of distinct subsets of macrophage: CD11c+/Ly6C- and CD11c-/Ly6C+ cells. CD11c+/Ly6C- cells were associated with the promotion of advanced liver fibrosis in NASH. On the other hand, CD11c-/Ly6C+ cells exhibited an anti-inflammatory effect and were involved in tissue remodeling processes. This study aimed to elucidate whether an iHFC diet with reduced cholic acid (iHFC#2 diet) induces NASH in C57BL/6 mice and examine the macrophage subsets accumulating in the liver. Histological and quantitative real-time PCR analyses revealed that the iHFC#2 diet promoted inflammation and fibrosis indicative of NASH in the livers of C57BL/6 mice. Cell numbers of Kupffer cells decreased and recruited macrophages were accumulated in the livers of iHFC#2 diet-fed C57BL/6 mice. Notably, the iHFC#2 diet resulted in the accumulation of three macrophage subsets in the livers of C57BL/6 mice: CD11c+/Ly6C-, CD11c-/Ly6C+, and CD11c+/Ly6C+ cells. However, CD11c+/Ly6C+ cells were not distinct populations in the iHFC-fed TSNO mice. Thus, differences in cholic acid content and mouse strain affect the macrophage subsets that accumulate in the liver.

SELECTION OF CITATIONS
SEARCH DETAIL
...