Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Radiol Phys Technol ; 15(4): 298-310, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35960494

ABSTRACT

In multisite studies, differences in imaging acquisition systems could affect the reproducibility of the results when examining changes in brain function using resting-state functional magnetic resonance imaging (rs-fMRI). This is also important for longitudinal studies, in which changes in equipment settings can occur. This study examined the reproducibility of functional connectivity (FC) metrics estimated from rs-fMRI data acquired using scanner receiver coils with different numbers of channels. This study involved 80 rs-fMRI datasets from 20 healthy volunteers scanned in two independent imaging sessions using both 12- and 32-channel coils for each session. We used independent component analysis (ICA) to evaluate the FC of canonical resting-state networks (RSNs) and graph theory to calculate several whole-brain network metrics. The effect of global signal regression (GSR) as a preprocessing step was also considered. Comparisons within and between receiver coils were performed. Irrespective of the GSR, RSNs derived from rs-fMRI data acquired using the same receiver coil were reproducible, but not from different receiver coils. However, both the GSR and the channel count of the receiver coil have discernible effects on the reproducibility of network metrics estimated using whole-brain network analysis. The data acquired using the 32-channel coil tended to have better reproducibility than those acquired using the 12-channel coil. Our findings suggest that the reproducibility of FC metrics estimated from rs-fMRI data acquired using different receiver coils showed some level of dependence on the preprocessing method and the type of analysis performed.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Brain Mapping/methods , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Healthy Volunteers
2.
Magn Reson Med Sci ; 20(4): 338-346, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-33115986

ABSTRACT

PURPOSE: The estimation of functional connectivity (FC) measures using resting state functional MRI (fMRI) is often affected by head motion during functional imaging scans. Head motion is more common in the elderly than in young participants and could therefore affect the evaluation of age-related changes in brain networks. Thus, this study aimed to investigate the influence of head motion in FC estimation when evaluating age-related changes in brain networks. METHODS: This study involved 132 healthy volunteers divided into 3 groups: elderly participants with high motion (OldHM, mean age (±SD) = 69.6 (±5.31), N = 44), elderly participants with low motion (OldLM, mean age (±SD) = 68.7 (±4.59), N = 43), and young adult participants with low motion (YugLM, mean age (±SD) = 27.6 (±5.26), N = 45). Head motion was quantified using the mean of the framewise displacement of resting state fMRI data. After preprocessing all resting state fMRI datasets, several resting state networks (RSNs) were extracted using independent component analysis (ICA). In addition, several network metrics were also calculated using network analysis. These FC measures were then compared among the 3 groups. RESULTS: In ICA, the number of voxels with significant differences in RSNs was higher in YugLM vs. OldLM comparison than in YugLM vs. OldHM. In network analysis, all network metrics showed significant (P < 0.05) differences in comparisons involving low vs. high motion groups (OldHM vs. OldLM and OldHM vs. YugLM). However, there was no significant (P > 0.05) difference in the comparison involving the low motion groups (OldLM vs. YugLM). CONCLUSION: Our findings showed that head motion during functional imaging could significantly affect the evaluation of age-related brain network changes using resting state fMRI data.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Aged , Brain/diagnostic imaging , Head/diagnostic imaging , Humans , Motion , Young Adult
3.
Subcell Biochem ; 94: 195-218, 2020.
Article in English | MEDLINE | ID: mdl-32189300

ABSTRACT

Instead of the red blood of vertebrates, most molluscs have blue hemolymph containing hemocyanin, a type-3 copper-containing protein. The hemoglobin of vertebrate blood is replaced in most molluscs with hemocyanin, which plays the role of an  oxygen transporter. Oxygen-binding in hemocyanin changes its hue from colorless deoxygenated hemocyanin into blue oxygenated hemocyanin. Molecules of molluscan hemocyanin are huge, cylindrical multimeric proteins-one of the largest protein molecules in the natural world. Their huge molecular weight (from 3.3 MDa to more than 10 MDa) are the defining characteristic of molluscan hemocyanin, a property that has complicated structural analysis of the molecules for a long time. Recently, the structural analysis of a cephalopod (squid) hemocyanin has succeeded using a hybrid method employing both X-ray crystallography and cryo-EM. In a biochemical breakthrough for molluscan hemocyanin, the first quaternary structure with atomic resolution is on the verge of solving the mystery of molluscan hemocyanin. Here we describe the latest information about the molecular structure, classification and evolution of the molecule, and the physiology of molluscan hemocyanin.


Subject(s)
Hemocyanins/chemistry , Hemocyanins/metabolism , Animals , Crystallography, X-Ray , Hemolymph/chemistry , Models, Molecular , Molecular Structure , Mollusca/chemistry
4.
IUCrJ ; 6(Pt 3): 426-437, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31098023

ABSTRACT

The oxygen transporter of molluscs, hemocyanin, consists of long pearl-necklace-like subunits of several globular domains. The subunits assemble in a complex manner to form cylindrical decamers. Typically, the first six domains of each subunit assemble together to form the cylinder wall, while the C-terminal domains form a collar that fills or caps the cylinder. During evolution, various molluscs have been able to fine-tune their oxygen binding by deleting or adding C-terminal domains and adjusting their inner-collar architecture. However, squids have duplicated one of the wall domains of their subunits instead. Here, using cryo-EM and an optimized refinement protocol implemented in SPHIRE, this work tackled the symmetry-mismatched structure of squid hemocyanin, revealing the precise effect of this duplication on its quaternary structure and providing a potential model for its structural evolution.

5.
Biophys Rev ; 10(2): 191-202, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29235083

ABSTRACT

Most molluscs have blue blood because their respiratory molecule is hemocyanin, a type-3 copper-binding protein that turns blue upon oxygen binding. Molluscan hemocyanins are huge cylindrical multimeric glycoproteins that are found freely dissolved in the hemolymph. With molecular masses ranging from 3.3 to 13.5 MDa, molluscan hemocyanins are among the largest known proteins. They form decamers or multi-decamers of 330- to 550-kDa subunits comprising more than seven paralogous functional units. Based on the organization of functional domains, they assemble to form decamers, di-decamers, and tri-decamers. Their structure has been investigated using a combination of single particle electron cryo-microsopy of the entire structure and high-resolution X-ray crystallography of the functional unit, although, the one exception is squid hemocyanin for which a crystal structure analysis of the entire molecule has been carried out. In this review, we explain the molecular characteristics of molluscan hemocyanin mainly from the structural viewpoint, in which the structure of the functional unit, architecture of the huge cylindrical multimer, relationship between the composition of the functional unit and entire tertiary structure, and possible functions of the carbohydrates are introduced. We also discuss the evolutionary implications and physiological significance of molluscan hemocyanin.

6.
Structure ; 23(12): 2204-2212, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26602184

ABSTRACT

Molluscan hemocyanin, a copper-containing oxygen transporter, is one of the largest known proteins. Although molluscan hemocyanins are currently applied as immunotherapeutic agents, their precise structure has not been determined because of their enormous size. Here, we have determined the first X-ray crystal structure of intact molluscan hemocyanin. The structure unveiled the architecture of the 3.8-MDa supermolecule composed of homologous functional units (FUs), wherein the dimers of FUs hierarchically associated to form the entire cylindrical decamer. Most of the specific inter-FU interactions were localized at narrow regions in the FU dimers, suggesting that rigid FU dimers formed by specific interactions assemble with flexibility. Furthermore, the roles of carbohydrates in assembly and allosteric effect, and conserved sulfur-containing residues in copper incorporation, were revealed. The precise structural information obtained in this study will accelerate our understanding of the molecular basis of hemocyanin and its future applications.


Subject(s)
Hemocyanins/chemistry , Amino Acid Sequence , Animals , Copper/metabolism , Crystallography, X-Ray , Hemocyanins/metabolism , Molecular Sequence Data , Mollusca , Protein Binding , Protein Structure, Tertiary
7.
J Struct Biol ; 190(3): 379-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25943742

ABSTRACT

Many molluscs transport oxygen using a very large cylindrical multimeric copper-containing protein named hemocyanin. The molluscan hemocyanin forms a decamer (cephalopods) or multidecamer (gastropods) of approximately 330-450kDa subunits, resulting in a molecular mass >3.3MDa. Therefore, molluscan hemocyanin is one of the largest proteins. The reason why these organisms use such a large supermolecule for oxygen transport remains unclear. Atomic-resolution X-ray crystallographic analysis is necessary to unveil the detailed molecular structure of this mysterious large molecule. However, its propensity to dissociate in solution has hampered the crystallization of its intact form. In the present study, we successfully obtained the first crystals of an intact decameric molluscan hemocyanin. The diffraction dataset at 3.0-Å resolution was collected by merging the datasets of two isomorphic crystals. Electron microscopy analysis of the dissolved crystals revealed cylindrical particles. Furthermore, self-rotation function analysis clearly showed the presence of a fivefold symmetry with several twofold symmetries perpendicular to the fivefold axis. The absorption spectrum of the crystals showed an absorption peak around 345nm. These results indicated that the crystals contain intact hemocyanin decamers in the oxygen-bound form.


Subject(s)
Hemocyanins/chemistry , Animals , Crystallization/methods , Crystallography, X-Ray/methods , Microscopy, Electron/methods , Models, Molecular , Molecular Structure , Mollusca/metabolism , Oxygen/chemistry , Protein Conformation , X-Rays
8.
FEBS Lett ; 584(18): 3949-54, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20682312

ABSTRACT

We examined the change of protein tyrosine kinases (PTKs) expression levels in colonic epithelial cells isolated from mice in which colitis was induced by oxazolone administration, using the monoclonal antibody YK34, which cross-reacts with a wide variety of PTKs. We identified focal adhesion kinase (FAK) and found the expression level increased due to the induction of colitis. Furthermore, we found that there was a positive correlation between FAK expression and the severity of colitis. Also, FAK expression localized in the colonic epithelium but not in the lamina propria, implying FAK functions in epithelial cells during colitis formation and/or wound repairing.


Subject(s)
Colitis/enzymology , Colon/enzymology , Focal Adhesion Kinase 1/biosynthesis , Intestinal Mucosa/enzymology , Animals , Colitis/chemically induced , Colitis/pathology , Colon/drug effects , Disease Models, Animal , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred BALB C , Oxazolone/pharmacology
9.
J Biol Chem ; 278(11): 9624-9, 2003 Mar 14.
Article in English | MEDLINE | ID: mdl-12496291

ABSTRACT

Possible roles of the Lys(189)-Lys(205) outermost loop on the A domain of sarcoplasmic reticulum Ca(2+)-ATPase were explored by mutagenesis. Both nonconservative and conservative substitutions of Val(200) caused very strong inhibition of Ca(2+)-ATPase activity, whereas substitutions of other residues on this loop reduced activity only moderately. All of the Val(200) mutants formed phosphoenzyme intermediate (EP) from ATP. Isomerization from ADP-sensitive EP (E1P) to ADP-insensitive EP (E2P) was not inhibited in the mutants, and a substantially larger amount of E2P actually accumulated in the mutants than in wild-type sarcoplasmic reticulum Ca(2+)-ATPase at steady state. In contrast, decay of EP formed from ATP in the presence of Ca(2+) was strongly inhibited in the mutants. Hydrolysis of E2P formed from P(i) in the absence of Ca(2+) was also strongly inhibited but was faster than the decay of EP formed from ATP, indicating that the main kinetic limitation of the decay comes after loss of ADP sensitivity but before E2P hydrolysis. On the basis of the well accepted mechanism of the Ca(2+)-ATPase, the limitation is likely associated with the Ca(2+)-releasing step from E2P.Ca(2). On the other hand, the rate of activation of dephosphorylated enzyme on high affinity Ca(2+) binding was not altered by the substitutions. In light of the crystal structures, the present results strongly suggest that Val(200) confers appropriate interactions of the Lys(189)-Lys(205) loop with the P domain in the Ca(2+)-released form of E2P. Results further suggest that these interactions, however, do not contribute much to domain organization in the dephosphorylated enzyme and thus would be mostly lost on E2P hydrolysis.


Subject(s)
Calcium-Transporting ATPases/chemistry , Calcium-Transporting ATPases/genetics , Calcium/metabolism , Lysine/chemistry , Valine/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/metabolism , Animals , COS Cells , Calcium/pharmacology , DNA, Complementary/metabolism , Dimerization , Hydrolysis , Kinetics , Models, Chemical , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Phosphorylation , Potassium/pharmacology , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Serine/chemistry , Time Factors , Transfection
10.
J Agric Food Chem ; 50(1): 196-202, 2002 Jan 02.
Article in English | MEDLINE | ID: mdl-11754567

ABSTRACT

Carp dorsal myosin formed oligomers that retained ATPase activity upon heating. Cleavage of the oligomeric myosin at subfragment-1 (S-1)/rod junction released monomeric S-1 and rod, indicating that ATPase retaining myosin associated near the S-1/rod junction. The digest also contained rod oligomers. Heating a mixture of S-1 and rod generated neither ATPase retaining S-1 oligomers nor rod oligomers. Electron microscopic observation of the heated myosin revealed that some oligomers were formed by associating at the S-1/rod joining region, exhibiting a recognized double head, probably ATPase retaining oligomers. No myosin oligomers associated at the tail region were observed, thus, rod aggregation would be formed at its very restricted region near the S-1/rod junction. Based on the findings, we proposed that the neck structure is important in the thermal oligomerization process of myosin.


Subject(s)
Hot Temperature , Myosins/chemistry , Adenosine Triphosphatases/metabolism , Animals , Carps , Microscopy, Electron , Myosins/metabolism , Myosins/ultrastructure , Protein Conformation , Protein Denaturation
SELECTION OF CITATIONS
SEARCH DETAIL
...