Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Arch Microbiol ; 206(6): 266, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761213

ABSTRACT

We succeeded in homogeneously expressing and purifying L-asparaginase from Latilactobacillus sakei LK-145 (Ls-Asn1) and its mutated enzymes C196S, C264S, C290S, C196S/C264S, C196S/C290S, C264S/C290S, and C196S/C264S/C290S-Ls-Asn1. Enzymological studies using purified enzymes revealed that all cysteine residues of Ls-Asn1 were found to affect the catalytic activity of Ls-Asn1 to varying degrees. The mutation of Cys196 did not affect the specific activity, but the mutation of Cys264, even a single mutation, significantly decreased the specific activity. Furthermore, C264S/C290S- and C196S/C264S/C290S-Ls-Asn1 almost completely lost their activity, suggesting that C290 cooperates with C264 to influence the catalytic activity of Ls-Asn1. The detailed enzymatic properties of three single-mutated enzymes (C196S, C264S, and C290S-Ls-Asn1) were investigated for comparison with Ls-Asn1. We found that only C196S-Ls-Asn1 has almost the same enzymatic properties as that of Ls-Asn1 except for its increased stability for thermal, pH, and the metals NaCl, KCl, CaCl2, and FeCl2. We measured the growth inhibitory effect of Ls-Asn1 and C196S-Ls-Asn1 on Jurkat cells, a human T-cell acute lymphoblastic leukemia cell line, using L-asparaginase from Escherichia coli K-12 as a reference. Only C196S-Ls-Asn1 effectively and selectively inhibited the growth of Jurkat T-cell leukemia, which suggested that it exhibited antileukemic activity. Furthermore, based on alignment, phylogenetic tree analysis, and structural modeling, we also proposed that Ls-Asn1 is a so-called "Type IIb" novel type of asparaginase that is distinct from previously reported type I or type II asparaginases. Based on the above results, Ls-Asn1 is expected to be useful as a new leukemia therapeutic agent.


Subject(s)
Asparaginase , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/chemistry , Asparaginase/isolation & purification , Asparaginase/pharmacology , Humans , Bacillaceae/enzymology , Bacillaceae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Hydrogen-Ion Concentration , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Jurkat Cells , Mutation , Amino Acid Sequence , Kinetics
2.
PLoS Comput Biol ; 20(4): e1011974, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635493

ABSTRACT

Since the left ventricle (LV) has pressure (Plv) and volume (Vlv), we can define LV elastance from the ratio between Plv and Vlv, termed as "instantaneous elastance." On the other hand, end-systolic elastance (Emax) is known to be a good index of LV contractility, which is measured by the slope of several end-systolic Plv-Vlv points obtained by using different loads. The word Emax originates from the assumption that LV elastance increases during the ejection phase and attains its maximum at the end-systole. From this concept, we can define another elastance determined by the slope of isochronous Plv-Vlv points, that is Plv-Vlv points at a certain time after the ejection onset time by using different loads. We refer to this elastance as "load-dependent elastance." To reveal the relation between these two elastances, we used a hemodynamic model that included a detailed ventricular myocyte contraction model. From the simulation results, we found that the isochronous Plv-Vlv points lay in one line and that the line slope corresponding to the load-dependent elastance slightly decreased during the ejection phase, which is quite different from the instantaneous elastance. Subsequently, we analyzed the mechanism determining these elastances from the model equations. We found that instantaneous elastance is directly related to contraction force generated by the ventricular myocyte, but the load-dependent elastance is determined by two factors: one is the transient characteristics of the cardiac cell, i.e., the velocity-dependent force drops characteristics in instantaneous shortening. The other is the force-velocity relation of the cardiac cell. We also found that the linear isochronous pressure-volume relation is based on the approximately linear relation between the time derivative of the cellular contraction force and the cellular shortening velocity that results from the combined characteristics of LV and aortic compliances.


Subject(s)
Heart Ventricles , Myocardial Contraction , Systole , Hemodynamics , Myocytes, Cardiac
3.
Biosci Biotechnol Biochem ; 87(10): 1193-1204, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37355782

ABSTRACT

Allitol is a hexitol produced by reducing the rare sugar D-allulose with a metal catalyst under hydrogen gas. To confirm the safe level of allitol, we conducted a series of safety assessments. From the results of Ames mutagenicity assay using Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, Escherichia coli strain WP2uvrA, and an in vitro chromosomal aberration test on cultured Chinese hamster cells, allitol did not show any significant genotoxic effect. No significant effects on general condition, urinalysis, hematology, physiology, histopathology, or at necropsy were observed at a dose of 1500 mg/kg body weight of allitol in the acute and 90-day subchronic oral-toxicity assessments for rats. A further study performed on healthy adult humans showed that the acute use level of allitol for diarrhea was 0.2 g/kg body weight for both men and women. The results of current safety assessment studies suggest that allitol is safe for human consumption.


Subject(s)
Chromosome Aberrations , Escherichia coli , Male , Cricetinae , Rats , Humans , Female , Animals , Rats, Sprague-Dawley , Mutagenicity Tests/methods , Cricetulus , Escherichia coli/genetics , Body Weight , Eating
4.
Amino Acids ; 54(5): 787-798, 2022 May.
Article in English | MEDLINE | ID: mdl-35122135

ABSTRACT

We succeeded in expressing selenocysteine ß-lyase (SCL) from a lactic acid bacterium, Leuconostoc mesenteroides LK-151 (Lm-SCL), in the soluble fractions of Escherichia coli Rosetta (DE3) using a novel expression vector of pET21malb constructed by ourselves that has both maltose binding protein (MBP)- and 6 × His-tag. Lm-SCL acted on L-selenocysteine, L-cysteine, and L-cysteine sulfinic acid but showed a high preference for L-selenocysteine. The kcat and kcat/Km values of Lm-SCL were determined to be 108 (min-1) and 42.0 (min-1・mM-1), respectively, and this was enough catalytic efficiency to suggest that Lm-SCL might also be involved in supplying elemental selenium from L-selenocysteine to selenoproteins like other SCLs. The optimum temperature and optimum pH of Lm-SCL were determined to be 37 °C and pH 6.5, respectively. Lm-SCL was stable at 37-45 °C and pH 6.5-7.5. Lm-SCL was completely inhibited by the addition of hydroxylamine, semicarbazide, and iodoacetic acid. The enzyme activity of Lm-SCL was decreased in the presence of various metal ions, especially Cu2+. The quaternary structure of Lm-SCL is a homodimer with a subunit molecular mass of 47.5 kDa. The similarity of the primary structure of Lm-SCL to other SCLs from Citrobacter freundii, Escherichia coli, humans, or mouse was calculated to be 47.0, 48.0, 12.5, or 24.0%, respectively. Unlike Ec-SCL, our mutational and molecular docking simulation studies revealed that C362 of Lm-SCL might also catalyze the deselenation of L-selenocysteine in addition to the desulfuration of L-cysteine.


Subject(s)
Leuconostoc mesenteroides , Animals , Cysteine/metabolism , Escherichia coli/metabolism , Lactic Acid , Lyases , Mice , Molecular Docking Simulation , Selenocysteine/metabolism , Selenoproteins/metabolism
5.
FEBS Open Bio ; 11(6): 1621-1637, 2021 06.
Article in English | MEDLINE | ID: mdl-33838083

ABSTRACT

d-Allulose has potential as a low-calorie sweetener which can suppress fat accumulation. Several enzymes capable of d-allulose production have been isolated, including d-tagatose 3-epimerases. Here, we report the isolation of a novel protein from Methylomonas sp. expected to be a putative enzyme based on sequence similarity to ketose 3-epimerase. The synthesized gene encoding the deduced ketose 3-epimerase was expressed as a recombinant enzyme in Escherichia coli, and it exhibited the highest enzymatic activity toward l-ribulose, followed by d-ribulose and d-allulose. The X-ray structure analysis of l-ribulose 3-epimerase from Methylomonas sp. (MetLRE) revealed a homodimeric enzyme, the first reported structure of dimeric l-ribulose 3-epimerase. The monomeric structure of MetLRE is similar to that of homotetrameric l-ribulose 3-epimerases, but the short C-terminal α-helix of MetLRE is unique and different from those of known l-ribulose 3 epimerases. The length of the C-terminal α-helix was thought to be involved in tetramerization and increasing stability; however, the addition of residues to MetLRE at the C terminus did not lead to tetramer formation. MetLRE is the first dimeric l-ribulose 3-epimerase identified to exhibit high relative activity toward d-allulose.


Subject(s)
Methylomonas/enzymology , Pentoses/chemistry , Racemases and Epimerases/chemistry , Crystallography, X-Ray , Models, Molecular , Pentoses/metabolism , Racemases and Epimerases/metabolism
6.
Anal Biochem ; 580: 56-61, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31163123

ABSTRACT

Here, a conventional chiral amino acid analysis method using high-performance liquid chromatography was coupled with a sample pretreatment using l-methionine γ-lyase from Pseudomonas putida ICR 3460 for the selective analysis of l-methionine and l-tryptophan. The sample was analyzed after the degradation of l-methionine with l-methionine γ-lyase, as l-methionine coelutes with l-tryptophan under the standard chiral amino acid analytical conditions used for precolumn derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. The l-tryptophan in the sample was then eluted as a clearly separated peak and analyzed further. Since the l-methionine γ-lyase did not act on l-tryptophan, we were able to calculate the l-methionine or l-tryptophan concentration based on the data obtained from 2 individual runs: the sample with and without l-methionine γ-lyase pretreatment. The concentration of l-tryptophan was calculated from the data obtained from the sample with l-methionine γ-lyase pretreatment, while the concentration of l-methionine was calculated using the following equation: l-methionine concentration = {the data from the sample without l-methionine γ-lyase pretreatment}-{the data from the sample with l-methionine γ-lyase pretreatment}. Model samples containing authentic amino acids and a fermented food sample were analyzed by our method, and the calculated concentrations of l-methionine and l-tryptophan were consistently in agreement with the theoretical values.


Subject(s)
Carbon-Sulfur Lyases/chemistry , Methionine/analysis , Tryptophan/analysis , Pseudomonas putida/enzymology , Substrate Specificity
7.
Amino Acids ; 51(2): 331-343, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30377839

ABSTRACT

We expressed a histidine racemase from Leuconostoc mesenteroides subsp. sake NBRC 102480 (Lm-HisR) successively in a soluble fraction of Escherichia coli BL21 (DE3) and then highly purified it from the cell-free extract. Lm-HisR showed amino acid racemase activity on histidine specifically. This is the first example of an amino acid racemase specifically acting on histidine. Phylogenetic analysis of Lm-HisR showed that Lm-HisR was located far from the cluster of alanine racemases reported thus far and only in lactic acid bacteria of the genus Leuconostoc. Alignment of the primary structure of Lm-HisR with those of lysine and alanine racemases and alanine racemase homologs previously reported revealed that the PLP-binding lysine and catalytic tyrosine were completely conserved, and some residues that are unique to the phylogenetic branch of Lm-HisR, Phe44, Ser45, Thr174, Thr206, His286, Ser287, Phe292, Gly312, Val357, and Ala358 were identified. We determined the crystal structure of Lm-HisR complexed with PLP at a 2.1-Å resolution. The crystal structure contained four molecules (two dimers) in the asymmetric unit. When comparing the 3D structure of Lm-HisR with those of racemases from Geobacillus stearothermophilus and Oenococcus oeni, Met315 was completely conserved, but Val357 was not. In addition, two significant differences were observed between Lm-HisR and G. stearothermophilus alanine racemase. Phe44 and His286 in Lm-HisR corresponded to Tyr43 and Tyr284 in G. stearothermophilus alanine racemase, respectively. Based on the structural analysis, comparison with alanine racemase, and docking simulation, three significant residues, Phe44, His286, and Val357, were identified that may control the substrate specificity of Lm-HisR.


Subject(s)
Amino Acid Isomerases/chemistry , Amino Acid Isomerases/isolation & purification , Histidine/chemistry , Leuconostoc mesenteroides/enzymology , Alanine Racemase/chemistry , Amino Acid Isomerases/genetics , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/enzymology , Geobacillus stearothermophilus/enzymology , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Phylogeny , Protein Structure, Secondary , Pyridoxal Phosphate/chemistry
8.
Front Microbiol ; 9: 403, 2018.
Article in English | MEDLINE | ID: mdl-29563907

ABSTRACT

The Lactobacillus sakei strain LK-145 isolated from Moto, a starter of sake, produces potentially large amounts of three D-amino acids, D-Ala, D-Glu, and D-Asp, in a medium containing amylase-digested rice as a carbon source. The comparison of metabolic pathways deduced from the complete genome sequence of strain LK-145 to the type culture strain of Lactobacillus sakei strain LT-13 showed that the L- and D-amino acid metabolic pathways are similar between the two strains. However, a marked difference was observed in the putative cysteine/methionine metabolic pathways of strain LK-145 and LT-13. The cystathionine ß-lyase homolog gene malY was annotated only in the genome of strain LT-13. Cystathionine ß-lyase is an important enzyme in the cysteine/methionine metabolic pathway that catalyzes the conversion of L-cystathionine into L-homocysteine. In addition to malY, most genome-sequenced strains of L. sakei including LT-13 lacked the homologous genes encoding other putative enzymes in this pathway. Accordingly, the cysteine/methionine metabolic pathway likely does not function well in almost all strains of L. sakei. We succeeded in cloning and expressing the malY gene from strain LT-13 (Ls-malY) in the cells of Escherichia coli BL21 (DE3) and characterized the enzymological properties of Ls-MalY. Spectral analysis of purified Ls-MalY showed that Ls-MalY contained a pyridoxal 5'-phosphate (PLP) as a cofactor, and this observation agreed well with the prediction based on its primary structure. Ls-MalY showed amino acid racemase activity and cystathionine ß-lyase activity. Ls-MalY showed amino acid racemase activities in various amino acids, such as Ala, Arg, Asn, Glu, Gln, His, Leu, Lys, Met, Ser, Thr, Trp, and Val. Mutational analysis revealed that the 𝜀-amino group of Lys233 in the primary structure of Ls-MalY likely bound to PLP, and Lys233 was an essential residue for Ls-MalY to catalyze both the amino acid racemase and ß-lyase reactions. In addition, Tyr123 was a catalytic residue in the amino acid racemase reaction but strongly affected ß-lyase activity. These results showed that Ls-MalY is a novel bifunctional amino acid racemase with multiple substrate specificity; both the amino acid racemase and ß-lyase reactions of Ls-MalY were catalyzed at the same active site.

9.
J Chem Phys ; 147(21): 214701, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29221392

ABSTRACT

We have examined the structural, electronic, and optical properties of zinc-octaethylporphyrin [Zn(OEP)]/C60 co-deposited films to elucidate the donor (D)-acceptor (A) interactions at the D/A interface of heterojunction organic solar cells (OSCs), using Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy in combination with first-principles and semi-empirical calculations. The FT-IR and XRD results indicated that Zn(OEP) and C60 were mixed with each other at the molecular level in the co-deposited film. The theoretical calculations suggested that in the interfacial region, it is energetically preferable for the C60 molecule to face the center of the planar structure of Zn(OEP) at a distance of 2.8 Å rather than the edge of the structure at a distance of 5.0 Å. After consideration of the C60 solvent effects, this coordination model for C60-Zn(OEP) adequately explained the line shift of the UV-vis peaks with respect to the proportion of C60 in the co-deposited films. A comparison of the energy level diagrams of Zn(OEP) before and after the interaction with C60 revealed that the LUMO, HOMO, and HOMO-1 were significantly affected by the interaction with C60. In particular, the HOMO-1 wave function became spread over a portion of C60, although the charge transfer between Zn(OEP) and C60 was almost negligible. Since no PL peaks (S1 → S0) from the excited Soret band of Zn(OEP) were observed for the Zn(OEP)/C60 co-deposited films, the D/A mixing layers played a crucial role in completely dissolving the photogenerated excitons to electrons-hole pairs that cause the short-circuit current, which is relevant to improving the energy conversion efficiency of OSCs.

10.
Genome Announc ; 5(31)2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28774969

ABSTRACT

Lactobacillus sakei strain LT-13 is a lactic acid bacterium isolated from moto starter of Japanese sake. This genome analysis revealed that the genome is composed of a circular chromosome and one plasmid, which contain 1,938 and 8 putative protein-coding genes, respectively.

11.
Genome Announc ; 5(31)2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28774971

ABSTRACT

The present study reports the complete genome sequence of Leuconostoc mesenteroides strain LT-38, which is a non-spore-forming Gram-positive lactic acid bacterium. The genome is composed of a 2,022,184-bp circular chromosome and contains 2,005 putative protein-coding genes.

12.
Genome Announc ; 5(33)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818888

ABSTRACT

This announcement reports the complete genome sequence of strain LK-145 of Lactobacillus sakei isolated from a Japanese sake cellar as a potent strain for the production of large amounts of d-amino acids. Three putative genes encoding an amino acid racemase were identified.

13.
Genome Announc ; 5(30)2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28751393

ABSTRACT

Here, we report the complete genome sequence of strain LK-151 of Leuconostoc mesenteroides, which was isolated from a Japanese sake cellar and has the potential to produce large amounts of d-amino acids, namely, d-Ala and d-Glu. The genome contains 4 genes related to d-amino acid production.

14.
Extremophiles ; 20(5): 711-21, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27438592

ABSTRACT

We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5'-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on L-cysteic acid and L-cysteine sulfinic acid in addition to D- and L-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. D-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.


Subject(s)
Amino Acid Isomerases/metabolism , Archaeal Proteins/metabolism , Hot Temperature , Pyridoxal Phosphate/metabolism , Thermococcus/enzymology , Amino Acid Isomerases/chemistry , Amino Acid Isomerases/genetics , Amino Acid Substitution , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Conserved Sequence , Enzyme Stability , Hydrogen-Ion Concentration , Substrate Specificity , Thermococcus/genetics
15.
Sci Rep ; 6: 26382, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27193448

ABSTRACT

Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

16.
Proteins ; 84(8): 1029-42, 2016 08.
Article in English | MEDLINE | ID: mdl-27040018

ABSTRACT

Maleylacetate reductase plays a crucial role in catabolism of resorcinol by catalyzing the NAD(P)H-dependent reduction of maleylacetate, at a carbon-carbon double bond, to 3-oxoadipate. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP-10005, GraC, has been elucidated by the X-ray diffraction method at 1.5 Å resolution. GraC is a homodimer, and each subunit consists of two domains: an N-terminal NADH-binding domain adopting an α/ß structure and a C-terminal functional domain adopting an α-helical structure. Such structural features show similarity to those of the two existing families of enzymes in dehydroquinate synthase-like superfamily. However, GraC is distinct in dimer formation and activity expression mechanism from the families of enzymes. Two subunits in GraC have different structures from each other in the present crystal. One subunit has several ligands mimicking NADH and the substrate in the cleft and adopts a closed domain arrangement. In contrast, the other subunit does not contain any ligand causing structural changes and adopts an open domain arrangement. The structure of GraC reveals those of maleylacetate reductase both in the coenzyme, substrate-binding state and in the ligand-free state. The comparison of both subunit structures reveals a conformational change of the Tyr326 loop for interaction with His243 on ligand binding. Structures of related enzymes suggest that His243 is likely a catalytic residue of GraC. Mutational analyses of His243 and Tyr326 support the catalytic roles proposed from structural information. The crystal structure of GraC characterizes the maleylacetate reductase family as a third family in the dehydroquinate synthase-like superfamily. Proteins 2016; 84:1029-1042. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adipates/chemistry , Bacterial Proteins/chemistry , Maleates/chemistry , NAD/chemistry , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Rhizobium/chemistry , Adipates/metabolism , Agrobacterium tumefaciens/chemistry , Agrobacterium tumefaciens/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Maleates/metabolism , Models, Molecular , Mutation , NAD/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Multimerization , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhizobium/enzymology , Structural Homology, Protein
17.
J Pharm Biomed Anal ; 116: 101-4, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-25982753

ABSTRACT

The intrinsic D-amino acid profile of mouse macrophages extracted from the peritoneal cavity was analyzed using high performance liquid chromatography. Six D-amino acids (D-Asp, D-Ser, D-Ala, D-Leu, D-Gln and D-Lys) were detected in cell lysates of mouse macrophages. The content and the D/D+L ratio differed depending on the type of D-amino acid and were approximately 3.5-22 nmol/g cells, and approximately 1-20%, respectively. The D-amino acid composition of RAW 264.7 cells, which is a model macrophage cell line, was similar to that of the mouse macrophage. These results suggest that macrophages and RAW 264.7 cells with macrophage-like functions have a similar D-amino acid profile.


Subject(s)
Amino Acids/analysis , Amino Acids/chemistry , Macrophages/chemistry , Amino Acids/metabolism , Animals , Cell Line , Chromatography, High Pressure Liquid/methods , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Stereoisomerism
18.
Mol Microbiol ; 95(2): 245-57, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25388514

ABSTRACT

MocR/GabR family proteins are widely distributed prokaryotic transcriptional regulators containing pyridoxal 5'-phosphate (PLP), a coenzyme form of vitamin B6. The Bacillus subtilis GabR, probably the most extensively studied MocR/GabR family protein, consists of an N-terminal DNA-binding domain and a PLP-binding C-terminal domain that has a structure homologous to aminotransferases. GabR suppresses transcription of gabR and activates transcription of gabT and gabD, which encode γ-aminobutyrate (GΑΒΑ) aminotransferase and succinate semialdehyde dehydrogenase, respectively, in the presence of PLP and GABA. In this study, we examined the mechanism underlying GabR-mediated gabTD transcription with spectroscopic, crystallographic and thermodynamic studies, focusing on the function of the aminotransferase domain. Spectroscopic studies revealed that GABA forms an external aldimine with the PLP in the aminotransferase domain. Isothermal calorimetry demonstrated that two GabR molecules bind to the 51-bp DNA fragment that contains the GabR-binding region. GABA minimally affected ΔG(binding) upon binding of GabR to the DNA fragment but greatly affected the contributions of ΔH and ΔS to ΔG(binding). GABA forms an external aldimine with PLP and causes a conformational change in the aminotransferase domain, and this change likely rearranges GabR binding to the promoter and thus activates gabTD transcription.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Transaminases/genetics , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acids/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , DNA, Bacterial/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Protein Binding , Protein Biosynthesis , Protein Stability , Protein Structure, Tertiary , Pyridoxal Phosphate/metabolism , Transaminases/chemistry , Transcription Factors/genetics , Transcription, Genetic , gamma-Aminobutyric Acid/metabolism
19.
Extremophiles ; 18(3): 589-602, 2014 May.
Article in English | MEDLINE | ID: mdl-24687296

ABSTRACT

We successfully cloned a novel branched-chain amino acid aminotransferase (Ts-BcAT; EC 2.6.1.42) gene from the Thermococcus sp. CKU-1 genome and expressed it in the soluble fraction of Escherichia coli Rosetta (DE3) cells. Ts-BcAT is a homodimer with an apparent molecular mass of approximately 92 kDa. The primary structure of Ts-BcAT showed high homology with the fold-type I, subgroup I aminotransferases, but showed little homology with BcATs known to date, i.e., those of Escherichia coli and Salmonella typhimurium, which belong to the fold-type IV, subgroup III aminotransferases. The maximum enzyme activity of Ts-BcAT was detected at 95 °C, and Ts-BcAT did not lose any enzyme activity, even after incubation at 90 °C for 5 h. Ts-BcAT was active in the pH range from 4.0 to 11.0, the optimum pH was 9.5, and the enzyme was stable between pH 6 and 7. The exceptionally low pK a of the nitrogen atom in the Lys258 ε-amino group in the internal aldimine bond of Ts-BcAT was determined to be 5.52 ± 0.05. Ts-BcAT used 21 natural and unnatural amino acids as a substrate in the overall transamination reaction. L-Leucine and other aliphatic amino acids are efficient substrates, while polar amino acids except glutamate were weak substrates. Phylogenetic analysis revealed that Ts-BcAT is a novel fold-type I, subgroup I branched-chain aminotransferase.


Subject(s)
Archaeal Proteins/metabolism , Aspartate Aminotransferases/metabolism , Thermococcus/enzymology , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Aspartate Aminotransferases/chemistry , Aspartate Aminotransferases/genetics , Cloning, Molecular , Molecular Sequence Data , Thermococcus/genetics
20.
Biosci Biotechnol Biochem ; 76(11): 2150-2, 2012.
Article in English | MEDLINE | ID: mdl-23132574

ABSTRACT

An enzymatic assay system for D-Asp was established using D-aspartate oxidase and oxaloacetate decarboxylase. In this system, D-Asp is converted to pyruvate, which is determined fluorometrically with 1,2-diamino-4,5-methylenedioxybenzene. This method makes possible D-Asp measurement at the micromolar level. The D-Asp contents of an edible brown alga, Hijika fusiforme, a lactic acid bacteria beverage, and pig testis were determined by the method.


Subject(s)
Aspartic Acid/metabolism , Carboxy-Lyases/metabolism , D-Aspartate Oxidase/metabolism , Enzyme Assays/methods , Animals , Male , Phaeophyceae/enzymology , Swine , Testis/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...