Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 16(11): e0259444, 2021.
Article in English | MEDLINE | ID: mdl-34780500

ABSTRACT

To clarify whether the relaxation period during stretching affects the degree of elevated shear rate and the degree of reduction of arterial stiffness, we examined relaxation duration to build an adequate stretching protocol. In Experiment 1, the changes in cardiac output, the shear rate in the posterior tibial artery, and blood volume in the calf muscle were measured during recovery (0-60 s) from a single bout of one-legged passive calf stretching in 12 healthy young men. In Experiment 2, the effects of different relaxation periods (5-, 10-, 20-, and 60-s) of passive one-legged intermittent calf stretching (30-s × 6 sets) on the femoral-ankle pulse wave velocity (faPWV) as an index of peripheral arterial stiffness were identified in 17 healthy young men. As a result, the stretched leg's shear rate significantly increased from 0 to 10th s after stretching. The muscle blood volume in the stretched leg significantly reduced during stretching, and then significantly increased during the recovery period after stretching; however, cardiac output remained unchanged during stretching and recovery. Additionally, the reduction in faPWV from the pre-stretching value in the stretched leg was significantly larger in the protocol with 10-s and 20-s relaxation periods than that in the non-stretched leg, but this did not differ in the 5-s and 60-s relaxation periods. These findings suggest that the relaxation periods of intermittent static stretching that cause a high transient increase in shear rate (via reperfusion after microvascular compression by the stretched calf muscles) are effective to reduce arterial stiffness.


Subject(s)
Muscle Stretching Exercises , Pulse Wave Analysis , Relaxation , Vascular Stiffness
2.
Front Physiol ; 11: 546, 2020.
Article in English | MEDLINE | ID: mdl-32536878

ABSTRACT

PURPOSE: Muscle fiber conduction velocity (CV) has been developed to estimate neuromuscular fatigue and measured during voluntary (VC) and electrically evoked (EC) contractions. Since CV during VC and EC reflect different physiological phenomena, the two parameters would show inconsistent changes under the conditions of neuromuscular fatigue. We investigated the time-course changes of CV during EC and VC after fatiguing exercise. METHODS: In 14 young males, maximal voluntary contraction (MVC) of knee extensor muscles, CV during electrical stimulation (CV-EC) and MVC (CV-VC) were measured before and immediately, 30 min, 60 min, 120 min, and 24 h after exhaustive leg pedaling exercise. RESULTS: CV-EC significantly increased immediately after the fatiguing exercise (p < 0.05) and had a significant negative correlation with MVC in merged data from all time-periods (r = -0.511, p < 0.001). CV-VC significantly decreased 30, 60, and 120 min after the fatiguing exercise (p < 0.05) and did not show any correlations with MVC (p > 0.05). CONCLUSION: These results suggest that CV during EC and VC exhibits different time-course changes, and that CV during EC may be appropriate to estimate the degree of neuromuscular fatigue after fatiguing pedaling exercise.

SELECTION OF CITATIONS
SEARCH DETAIL