Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nagoya J Med Sci ; 85(4): 758-771, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38155624

ABSTRACT

We aimed to elucidate the distribution pattern of the positron emission tomography probe [18F]THK 5351, a marker for astrogliosis and tau accumulation, in healthy aging. We also assessed the relationship between THK5351 retention and resting state networks. We enrolled 62 healthy participants in this study. All participants underwent magnetic resonance imaging/positron emission tomography scanning consisting of T1-weighted images, resting state functional magnetic resonance imaging, Pittsburgh Compound-B and THK positron emission tomography. The preprocessed THK images were entered into a scaled subprofile modeling/principal component analysis to extract THK distribution patterns. Using the most significant THK pattern, we generated regions of interest, and performed seed-based functional connectivity analyses. We also evaluated the functional connectivity overlap ratio to identify regions with high between-network connectivity. The most significant THK distributions were observed in the medial prefrontal cortex and bilateral putamen. The seed regions of interest in the medial prefrontal cortex had a functional connectivity map that significantly overlapped with regions of the dorsal default mode network. The seed regions of interest in the putamen showed strong overlap with the basal ganglia and anterior salience networks. The functional connectivity overlap ratio also showed that three peak regions had the characteristics of connector hubs. We have identified an age-related spatial distribution of THK in the medial prefrontal cortex and basal ganglia in normal aging. Interestingly, the distribution's peaks are located in regions of connector hubs that are strongly connected to large-scale resting state networks associated with higher cognitive function.

2.
Ann Nucl Med ; 37(7): 410-418, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37160863

ABSTRACT

OBJECTIVES: Standardised uptake value ratio (SUVR) is usually obtained by dividing the SUV of the region of interest (ROI) by that of the cerebellar cortex. Cerebellar cortex is not a valid reference in cases where amyloid ß deposition or lesions are present. Only few studies have evaluated the use of other regions as references. We compared the validity of the pons and corpus callosum as reference regions for the quantitative evaluation of brain positron emission tomography (PET) using 11C-PiB compared to the cerebellar cortex. METHODS: We retrospectively evaluated data from 86 subjects with or without Alzheimer's disease (AD). All subjects underwent magnetic resonance imaging, PET imaging, and cognitive function testing. For the quantitative analysis, three-dimensional ROIs were automatically placed, and SUV and SUVR were obtained. We compared these values between AD and healthy control (HC) groups. RESULTS: SUVR data obtained using the pons and corpus callosum as reference regions strongly correlated with that using the cerebellar cortex. The sensitivity and specificity were high when either the pons or corpus callosum was used as the reference region. However, the SUV values of the corpus callosum were different between AD and HC (p < 0.01). CONCLUSIONS: Our data suggest that the pons and corpus callosum might be valid reference regions.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Corpus Callosum/metabolism , Corpus Callosum/pathology , Retrospective Studies , Positron-Emission Tomography/methods , Brain/metabolism , Pons/diagnostic imaging , Pons/metabolism , Pons/pathology , Aniline Compounds
3.
Arch Clin Neuropsychol ; 38(1): 57-71, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36003060

ABSTRACT

OBJECTIVE: About 30%-50% of patients with amyotrophic lateral sclerosis (ALS) show cognitive impairment ranging from mild dysexecutive syndrome to frontotemporal dementia. We aimed to develop a brief cognitive test, convenient auditory-based language and executive function test (CABLET), for rapid detection of cognitive impairment in ALS, with reduced load on motor function. METHOD: The CABLET comprises two tests using auditory verbal stimuli: Test 1, assessing word repetition and lexical judgment, and Test 2, evaluating verbal short-term memory and semantics knowledge. The administration time of Test 1 and Test 2 was 1 and 3-5 min, respectively. Overall, 61 patients with ALS and 46 age-, sex-, and education-matched healthy controls participated in this study. All participants underwent existing neuropsychological tests and the CABLET. We investigated the applicability of the CABLET to detect ALS with cognitive impairment (ALSci) from normal cognition. RESULTS: Receiver operating characteristic analyses showed that both the CABLET total and Test 2 had good diagnostic accuracy (area under the curve [AUC]: total = 0.894, Test 2 = 0.893). Test 2 had the highest sensitivity (100% sensitivity and 71.4% specificity). No significant difference existed in the AUC between the analyses with and without age, education, and disease severity as covariates. Correlations were observed between the CABLET and established neuropsychological tests, supporting its good convergent validity. CONCLUSIONS: Our findings indicated that the CABLET could be useful in identifying ALSci quickly without adjusting for confounding factors. Further validation is required to evaluate it in larger groups and compare with ALS-specific cognitive screen.


Subject(s)
Amyotrophic Lateral Sclerosis , Executive Function , Humans , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnosis , Pilot Projects , Neuropsychological Tests , Language
4.
Brain Commun ; 4(5): fcac214, 2022.
Article in English | MEDLINE | ID: mdl-36072644

ABSTRACT

Cognitive and movement processes involved integration of several large-scale brain networks. Central to these integrative processes are connector hubs, brain regions characterized by strong connections with multiple networks. Growing evidence suggests that many neurodegenerative and psychiatric disorders are associated with connector hub dysfunctions. Using a network metric called functional connectivity overlap ratio, we investigated connector hub alterations in Parkinson's disease. Resting-state functional MRI data from 99 patients (male/female = 44/55) and 99 age- and sex-matched healthy controls (male/female = 39/60) participating in our cross-sectional study were used in the analysis. We have identified two sets of connector hubs, mainly located in the sensorimotor cortex and cerebellum, with significant connectivity alterations with multiple resting-state networks. Sensorimotor connector hubs have impaired connections primarily with primary processing (sensorimotor, visual), visuospatial, and basal ganglia networks, whereas cerebellar connector hubs have impaired connections with basal ganglia and executive control networks. These connectivity alterations correlated with patients' motor symptoms. Specifically, values of the functional connectivity overlap ratio of the cerebellar connector hubs were associated with tremor score, whereas that of the sensorimotor connector hubs with postural instability and gait disturbance score, suggesting potential association of each set of connector hubs with the disorder's two predominant forms, the akinesia/rigidity and resting tremor subtypes. In addition, values of the functional connectivity overlap ratio of the sensorimotor connector hubs were highly predictive in classifying patients from controls with an accuracy of 75.76%. These findings suggest that, together with the basal ganglia, cerebellar and sensorimotor connector hubs are significantly involved in Parkinson's disease with their connectivity dysfunction potentially driving the clinical manifestations typically observed in this disorder.

5.
Neuroimage ; 257: 119263, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35500805

ABSTRACT

Accumulating evidence from anatomical and neuroimaging studies suggests that the cerebellum is engaged in a variety of motor and cognitive tasks. Given its various functions, a key question is whether the cerebellum also plays an important role in the brain's integrative functions. Here, we hypothesize the existence of connector regions, also known as connector hubs, where multiple resting state networks converged in the cerebellum. To verify this, we employed a recently developed voxel-level network measure called functional connectivity overlap ratio (FCOR), which could be used to quantify the spatial extent of a region's connection to several large-scale cortical networks. Using resting state functional MRI data from 101 healthy participants, cerebellar FCOR maps were constructed and used to identify the locations of connector hubs in the cerebellum. Results showed that a number of cerebellar regions exhibited strong connectivity with multiple functional networks, verifying our hypothesis. These highly connected regions were located in the posterior cerebellum, especially in lobules VI, VII, and IX, and mainly connected to the core neurocognitive networks such as default mode and executive control networks. Regions associated with the sensorimotor network were also localized in lobule V, VI, and VIII, albeit in small clusters. These cerebellar connector hubs may play an essential role in the processing of information across the core neurocognitive networks.


Subject(s)
Cerebellum , Magnetic Resonance Imaging , Cerebellum/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neural Pathways , Neuroimaging
6.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-35045976

ABSTRACT

The aging brain undergoes structural changes even in very healthy individuals. Quantifying these changes could help disentangle pathologic changes from those associated with the normal human aging process. Using longitudinal magnetic resonance imaging (MRI) data from 227 carefully selected healthy human cohort with age ranging from 50 to 80 years old at baseline scan, we quantified age-related volumetric changes in the brain of healthy human older adults. Longitudinally, the rates of tissue loss in total gray matter (GM) and white matter (WM) were 2497.5 and 2579.8 mm3 per year, respectively. Across the whole brain, the rates of GM decline varied with regions in the frontal and parietal lobes having faster rates of decline, whereas some regions in the occipital and temporal lobes appeared relatively preserved. In contrast, cross-sectional changes were mainly observed in the temporal-occipital regions. Similar longitudinal atrophic changes were also observed in subcortical regions including thalamus, hippocampus, putamen, and caudate, whereas the pallidum showed an increasing volume with age. Overall, regions maturing late in development (frontal, parietal) are more vulnerable to longitudinal decline, whereas those that fully mature in the early stage (temporal, occipital) are mainly affected by cross-sectional changes in healthy older cohort. This may suggest that, for a successful healthy aging, the former needs to be maximally developed at an earlier age to compensate for the longitudinal decline later in life and the latter to remain relatively preserved even in old age, consistent with both concepts of reserve and brain maintenance.


Subject(s)
Aging , Brain , Aged , Aged, 80 and over , Aging/pathology , Brain/diagnostic imaging , Brain/pathology , Cross-Sectional Studies , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Middle Aged
7.
Eur J Neurol ; 29(2): 432-440, 2022 02.
Article in English | MEDLINE | ID: mdl-34632672

ABSTRACT

BACKGROUND AND PURPOSE: To clarify the relationship between fiber-specific white matter changes in amyotrophic lateral sclerosis (ALS) and clinical signs of upper motor neuron (UMN) involvement, we performed a fixel-based analysis (FBA), a novel framework for diffusion-weighted imaging analysis. METHODS: We enrolled 96 participants, including 48 nonfamilial ALS patients and 48 age- and sex-matched healthy controls (HCs), in this study and conducted whole-brain FBA and voxel-based morphometry analysis. We compared the fiber density (FD), fiber morphology (fiber cross-section [FC]), and a combined index of FD and FC (FDC) between the ALS and HC groups. We performed a tract-of-interest analysis to extract FD values across the significant regions in the whole-brain analysis. Then, we evaluated the associations between FD values and clinical variables. RESULTS: The bilateral corticospinal tracts (CSTs) and the corpus callosum (CC) showed reduced FD and FDC in ALS patients compared with HCs (p < 0.05, familywise error-corrected), and the comparison of FCs revealed no region that was significantly different from another. Voxel-based morphometry showed cortical volume reduction in the regions, including the primary motor area. Clinical scores showed correlations with FD values in the CSTs (UMN score: rho = -0.530, p < 0.001; central motor conduction time [CMCT] in the upper limb: rho = -0.474, p = 0.008; disease duration: rho = -0.383, p = 0.007; ALS Functional Rating Scale-Revised: rho = 0.340, p = 0.018). In addition, patients whose CMCT was not calculated due to unevoked waves also showed FD reduction in the CSTs. CONCLUSIONS: Our findings suggest that FD values in the CST estimated via FBA can be potentially used in evaluating UMN impairments.


Subject(s)
Amyotrophic Lateral Sclerosis , White Matter , Amyotrophic Lateral Sclerosis/diagnostic imaging , Diffusion Tensor Imaging , Humans , Motor Neurons , Pyramidal Tracts/diagnostic imaging , White Matter/diagnostic imaging
8.
iScience ; 24(10): 103106, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34622159

ABSTRACT

The thalamus is critical for the brain's integrative hub functions; however, the localization and characterization of the different thalamic hubs remain unclear. Using a voxel-level network measure called functional connectivity overlap ratio (FCOR), we examined the thalamus' association with large-scale resting-state networks (RSNs) to elucidate its connector hub roles. Connections to the core-neurocognitive networks were localized in the anterior and medial parts, such as the anteroventral and mediodorsal nuclei areas. Regions functionally connected to the sensorimotor network were distinctively located around the lateral pulvinar nucleus but to a limited extent. Prominent connector hubs include the anteroventral, ventral lateral, and mediodorsal nuclei with functional connections to multiple RSNs. These findings suggest that the thalamus, with extensive connections to most of the RSNs, is well placed as a critical integrative functional hub and could play an important role for functional integration facilitating brain functions associated with primary processing and higher cognition.

9.
Parkinsonism Relat Disord ; 90: 114-119, 2021 09.
Article in English | MEDLINE | ID: mdl-34481140

ABSTRACT

INTRODUCTION: This study aimed to evaluate whether novel individual voxel-based morphometry adjusting covariates (iVAC), such as age, sex, and total intracranial volume, could increase the accuracy of a diagnosis of multiple system atrophy (MSA) and enable the differentiation of MSA from Parkinson's disease (PD). METHODS: We included 53 MSA patients (MSA-C: 33, MSA-P: 20), 53 PD patients, and 189 healthy controls in this study. All participants underwent high-resolution T1-weighted imaging (WI) and T2-WI with a 3.0-T MRI scanner. We evaluated the occurrence of significant atrophic findings in the pons/middle cerebellar peduncle (MCP) and putamen on iVAC and compared these findings with characteristic changes on T2-WI. RESULTS: On iVAC, abnormal findings were observed in the pons/MCP of 96.2% of MSA patients and in the putamen of 80% of MSA patients; however, on T2-WI, they were both observed at a frequency of 60.4% in MSA patients. On iVAC, all but one MSA-P patient (98.1%) showed significant atrophic changes in the pons/MCP or putamen. By contrast, 69.8% of patients with MSA showed abnormal signal changes in the pons/MCP or putamen on T2-WI. iVAC yielded 95.0% sensitivity and 96.2% specificity for differentiating MSA-P from PD. CONCLUSION: iVAC enabled us to recognize the morphological characteristics of MSA visually and with high accuracy compared to T2-WI, indicating that iVAC is a potential diagnostic screening tool for MSA.


Subject(s)
Magnetic Resonance Imaging/methods , Multiple System Atrophy/diagnosis , Parkinson Disease/diagnosis , Adult , Aged , Case-Control Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Middle Cerebellar Peduncle/diagnostic imaging , Pons/diagnostic imaging , Putamen/diagnostic imaging , Reproducibility of Results , Sensitivity and Specificity
10.
Article in English | MEDLINE | ID: mdl-33908332

ABSTRACT

Objective: Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder characterized by motor neuron involvement. Although olfactory dysfunction has been described in ALS, clinicoradiological features associated with the olfactory dysfunction remain poorly understood. Methods: We enrolled 30 patients with ALS and age- and sex-matched 53 healthy controls (HCs). All participants underwent the odor stick identification test for Japanese (OSIT-J) and clinical assessments, including disease duration, ALSFRS-R, site of onset, forced vital capacity, and cognitive examinations that reflected the general, executive, memory and language function. We investigated the associations between OSIT-J score and clinical features and examined atrophic changes by voxel-based morphometry (VBM) analysis to MRI. Results: The OSIT-J score was significantly lower in ALS patients than HCs (6.9 ± 3.2 vs. 9.8 ± 1.9, p < 0.001). In ALS, there were significant relationships between OSIT-J score and age at examination, frontal assessment battery, word fluencies, digit span forward, and ADAS-Jcog recognition, but not education, disease type, duration, ALSFRS-R and, %VC. Multiple regression analysis with stepwise method showed the only ADAS-Jcog recognition substantially predicted OSIT-J score. VBM analysis with age, sex, total intracranial volume, and ADAS-Jcog recognition as covariates showed OSIT-J scores were substantially correlated with atrophic changes of left orbital cortex consisting of gyrus rectus and medial orbital gyrus and right hippocampus in ALS. Conclusion: ALS patients could show substantial olfactory dysfunction in association with orbital cortex and hippocampus involvements. The olfactory examination could be a useful marker for screening of frontotemporal alteration in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Olfaction Disorders , Adult , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Atrophy , Frontal Lobe , Humans , Magnetic Resonance Imaging , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/etiology
11.
Ann Clin Transl Neurol ; 7(11): 2115-2126, 2020 11.
Article in English | MEDLINE | ID: mdl-33089973

ABSTRACT

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a multisystem disorder associated with motor impairment and behavioral/cognitive involvement. We examined decision-making features and changes in the neural hub network in patients with ALS using a probabilistic reversal learning task and resting-state network analysis, respectively. METHODS: Ninety ALS patients and 127 cognitively normal participants performed this task. Data from 62 ALS patients and 63 control participants were fitted to a Q-learning model. RESULTS: ALS patients had anomalous decision-making features with little shift in choice until they thought the value of the two alternatives had become equal. The quantified parameters (Pαß) calculated by logistic regression analysis with learning rate and inverse temperature well represented the unique choice pattern of ALS patients. Resting-state network analysis demonstrated a strong correlation between Pαß and decreased degree centrality in the anterior cingulate gyrus and frontal pole. INTERPRETATION: Altered decision-making in ALS patients may be related to the decreased hub function of medial prefrontal areas.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Cognitive Dysfunction/physiopathology , Decision Making/physiology , Gyrus Cinguli/physiopathology , Nerve Net/physiopathology , Prefrontal Cortex/physiopathology , Aged , Amyotrophic Lateral Sclerosis/complications , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Reversal Learning/physiology
12.
Parkinsonism Relat Disord ; 80: 21-27, 2020 11.
Article in English | MEDLINE | ID: mdl-32932024

ABSTRACT

INTRODUCTION: The role of the cerebellum in Parkinson's disease (PD) has attracted increasing attention; however, the role of functional connectivity (FC) between the basal ganglia and particular cerebellar subregions remains to be elucidated. We aimed to clarify the FC and its contribution to motor and cognitive performances in patients with PD. METHODS: We included 99 patients with PD and 99 age- and sex-matched healthy controls in this study. We created a cerebellar functional parcellation by performing cerebellum-only independent component analysis. Using the functional parcellation map, we performed seed-based connectivity analysis using each region as a seed and extracted the mean correlation coefficients within the thalamus and basal ganglia, including the caudate, pallidum, putamen and subthalamic nucleus. We examined the group differences and correlations with the motor and general cognitive scores. In addition, we conducted a mediation analysis to clarify the relationship among FC, motor severity, and cognition. RESULTS: The PD group showed decreased FC between a wide range of cerebellar subregions and the basal ganglia. Motor severity was correlated with FC between the subthalamic nucleus and posterior Crus I/II, and general cognitive performance scores correlated with FC between the caudate nucleus and medial-posterior part of the Crus I/II (p < 0.05, corrected for multiple comparisons). The cerebello-caudate network had a direct effect on cognitive performance (p = 9.0 × 10-3), although partially mediated by motor performance (p = 8.2 × 10-3). CONCLUSION: FC between cerebellar Crus I/II and divergent basal ganglia related to motor and cognitive performance in PD.


Subject(s)
Basal Ganglia/physiopathology , Cerebellum/physiopathology , Cognitive Dysfunction/physiopathology , Connectome , Nerve Net/physiopathology , Parkinson Disease/physiopathology , Aged , Basal Ganglia/diagnostic imaging , Cerebellum/diagnostic imaging , Cognitive Dysfunction/etiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Severity of Illness Index
13.
J Neural Transm (Vienna) ; 127(10): 1387-1397, 2020 10.
Article in English | MEDLINE | ID: mdl-32860121

ABSTRACT

Cognitive deficits in Parkinson's disease (PD) are heterogeneous entities, and the cognitive status fluctuates over time. However, individual changes in longitudinal cognitive performance in PD are not fully understood. We evaluated three visual indices (visuoperception, visuoconstruction, and visuospatial ability) and four cognitive domains (attention/working memory, executive function, memory, and language) at baseline (Time1) and at 1-year follow-up (Time2) in 36 patients with PD and 32 healthy controls (HCs). To explore the magnitude and frequency of cognitive changes, we analyzed data using the simple difference method and the standardized regression-based method. We also explored the correlations between changes in test scores and several clinical predictors, using logistic regression analysis. At 1 year, patients with PD showed higher rates of change in scores on several cognitive tests, especially the Incomplete Letters test of visuoperception, compared to HCs. After adjusting for demographic variables, the visuoperceptual change was 61.1% overall, with the largest effect size. The changes in scores of visuoperception correlated with those of memory (r = 0.672, p < 0.001), language (r = 0.389, p < 0.05), and visuospatial ability (r = 0.379, p < 0.05). The severity of olfactory disturbance, the MDS-UPDRS Part I score, and younger PD onset predicted the significant changes observed in the Incomplete Letters test scores. Visuoperception changed more in non-demented PD patients than in HCs at 1-year follow-up. The changes in visuoperception could relate to involvement of the ventral occipitotemporal pathway, the more widespread temporal lobe, and brain reserve in PD.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Executive Function , Follow-Up Studies , Humans , Neuropsychological Tests , Parkinson Disease/complications
14.
Neuroimage ; 222: 117241, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32798679

ABSTRACT

Neuroimaging studies have shown that the brain is functionally organized into several large-scale brain networks. Within these networks are regions that are widely connected to several other regions within and/or outside the network. Regions that connect to several other networks, known as connector hubs, are believed to be crucial for information transfer and between-network communication within the brain. To identify regions with high between-network connectivity at the voxel level, we introduced a novel metric called functional connectivity overlap ratio (FCOR), which quantifies the spatial extent of a region's connection to a given network. Using resting state functional magnetic resonance imaging data, FCOR maps were generated for several well-known large-scale resting state networks (RSNs) and used to examine the relevant associations among different RSNs, identify connector hub regions in the cerebral cortex, and elucidate the hierarchical functional organization of the brain. Constructed FCOR maps revealed a strong association among the core neurocognitive networks (default mode, salience, and executive control) as well as among primary processing networks (sensorimotor, auditory, and visual). Prominent connector hubs were identified in the bilateral middle frontal gyrus, posterior cingulate, lateral parietal, middle temporal, dorsal anterior cingulate, and anterior insula, among others, regions mostly associated with the core neurocognitive networks. Finally, clustering the whole brain using FCOR features yielded a topological organization that arranges brain regions into a hierarchy of information processing systems with the primary processing systems at one end and the heteromodal systems comprising connector hubs at the other end.


Subject(s)
Brain/physiology , Nerve Net/physiology , Neural Pathways/physiology , Adult , Cerebral Cortex/physiology , Executive Function , Female , Humans , Magnetic Resonance Imaging/methods , Male , Young Adult
15.
Clin Park Relat Disord ; 3: 100036, 2020.
Article in English | MEDLINE | ID: mdl-34316622

ABSTRACT

INTRODUCTION: Parkinson's disease (PD) shows a variety of visual deficits including visuoperceptual disturbances, however, the neural basis remains unclear. We aimed to clarify clinical and neural features of visuoperceptual disturbances in PD. METHODS: The visuospatial/perceptual abilities of ninety-six participants (48 patients with PD and 48 healthy controls) were evaluated using the subtest part 1 and 5-8 of the Visual Object and Space Perception battery (VOSP), cube/pentagon copying and clock drawing tasks. Resting-state fMRI images were acquired and analyzed the differences between PD with incomplete letters below the cut-off and above for intranetwork (primary/medial/higher visual networks) and interregional functional connectivity changes, and spectral dynamic causal modeling was performed to examine the causality. RESULTS: In the PD group, position discrimination and incomplete letter scores were significantly decreased among VOSP subtests, the latter having the largest effect size. The incomplete letter scores correlated with the position discrimination while not with the dot counting, number location and cube analysis, cube/pentagon copying or clock drawing. The group with the incomplete letter scores below the cut-off had regions with decreased functional connectivity surrounding the calcarine sulcus in the primary visual network. These regions had decreased interregional functional connectivity with bilateral lingual gyri and cunei but increased with the thalamus. In this group, effective connectivity from the lingual gyrus to the calcarine sulcus was significantly decreased. CONCLUSION: The incomplete letters may be sensitive to detect visuoperceptual disturbances in PD. Decreased connectivity in the ventral visual feedback pathway may contribute to these deficits.

16.
EBioMedicine ; 47: 506-517, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31492562

ABSTRACT

BACKGROUND: The clinicopathological continuity between amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is well known. Although ALS demonstrates language symptoms similar to FTLD, including semantic dementia, word reading impairments in ALS have not been well studied. "Jukujikun" are Kanji-written words with irregular pronunciation comparable to "exception words" and useful for detecting semantic deficits in Japan. We conducted a cross-sectional study to investigate Jukujikun reading impairments and related network changes in ALS. METHODS: We enrolled 71 ALS patients and 69 healthy controls (HCs). Age-, sex-, and education matched HCs were recruited from another cohort study concurrently with patient registration. We examined neuropsychological factors including low frequency Jukujikun reading. We performed resting-state functional magnetic resonance imaging with voxel-based graph analysis on a subset of participants who agreed. FINDINGS: Low frequency Jukujikun score was decreased in ALS (15·0[11·0-19·0](median[25-75 percentile])) compared with HCs (19·0[17·3-20·0]) (p < 0·001, effect size = 0·43). Fifty-two percent of ALS (N = 37) with low frequency Jukujikun score ≤ 5th percentile of HCs was classified as ALS with positive Jukujikun deficit (ALS-JD+). Compared with HCs, ALS-JD+ showed decreased degree centrality in the right lingual/fusiform gyrus, where connectivities with regions associated with word perception, semantic processing, or speech production were decreased. They also showed increased degree centrality in the left inferior/middle temporal gyrus, associated with increased connectivities involving semantic processing. INTERPRETATION: Dysfunction of the "hub" in the right lingual/fusiform gyrus can affect semantic deficit in ALS. Considering neuropsychological symptoms as network impairments is vital for understanding various diseases. FUND: MHLW and MEXT, Japan.


Subject(s)
Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/physiopathology , Frontotemporal Dementia/physiopathology , Nerve Net , Occipital Lobe/physiopathology , Temporal Lobe/physiopathology , Aged , Amyotrophic Lateral Sclerosis/diagnosis , Case-Control Studies , Female , Frontotemporal Dementia/diagnosis , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests
17.
Cerebellum ; 18(4): 770-780, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31069705

ABSTRACT

We aimed to elucidate the effect of cerebellar degeneration in relation to cognition in multiple system atrophy (MSA). Thirty-two patients diagnosed with probable MSA and 32 age- and gender-matched healthy controls (HCs) were enrolled. We conducted voxel-based morphometry (VBM) for anatomical images and independent component analysis (ICA), dual-regression analysis, and seed-based analysis for functional images with voxel-wise gray matter correction. In the MSA group, a widespread cerebellar volume loss was observed. ICA and dual-regression analysis showed lower functional connectivity (FC) in the left executive control and salience networks in regions located in the cerebellum. Seed-based analysis using the identified cerebellar regions as seeds showed extensive disruptions in cerebello-cerebral networks. Global cognitive scores correlated with the FC values between the right lobules VI/crus I and the medial prefrontal/anterior cingulate cortices and between the same region and the amygdala/parahippocampal gyrus. Our study indicates that cerebellar degeneration in MSA causes segregation of cerebellar-cerebral networks. Furthermore, the cognitive deficits in MSA may be driven by decreased cerebello-prefrontal and cerebello-amygdaloid functional connections.


Subject(s)
Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Cognition , Multiple System Atrophy/physiopathology , Multiple System Atrophy/psychology , Nerve Net/physiopathology , Aged , Brain Mapping , Cognition Disorders/etiology , Cognition Disorders/psychology , Executive Function , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multiple System Atrophy/complications , Neuropsychological Tests , Psychomotor Performance
18.
Brain ; 139(Pt 12): 3170-3186, 2016 12.
Article in English | MEDLINE | ID: mdl-27797808

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a slowly progressive neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the central and peripheral nervous system, and also in the visceral organs. NIID has been considered to be a heterogeneous disease because of the highly variable clinical manifestations, and ante-mortem diagnosis has been difficult. However, since we reported the usefulness of skin biopsy for the diagnosis of NIID, the number of NIID diagnoses has increased, in particular adult-onset NIID. In this study, we studied 57 cases of adult-onset NIID and described their clinical and pathological features. We analysed both NIID cases diagnosed by post-mortem dissection and by ante-mortem skin biopsy based on the presence of characteristic eosinophilic, hyaline and ubiquitin-positive intanuclear inclusion: 38 sporadic cases and 19 familial cases, from six families. In the sporadic NIID cases with onset age from 51 to 76, dementia was the most prominent initial symptom (94.7%) as designated 'dementia dominant group', followed by miosis, ataxia and unconsciousness. Muscle weakness and sensory disturbance were also observed. It was observed that, in familial NIID cases with onset age less than 40 years, muscle weakness was seen most frequently (100%), as designated 'limb weakness group', followed by sensory disturbance, miosis, bladder dysfunction, and dementia. In familial cases with more than 40 years of onset age, dementia was most prominent (100%). Elevated cerebrospinal fluid protein and abnormal nerve conduction were frequently observed in both sporadic and familial NIID cases. Head magnetic resonance imaging showed high intensity signal in corticomedullary junction in diffusion-weighted image in both sporadic and familial NIID cases, a strong clue to the diagnosis. All of the dementia dominant cases presented with this type of leukoencephalopathy on head magnetic resonance imaging. Both sporadic and familial NIID cases presented with a decline in Mini-Mental State Examination and Frontal Assessment Battery scores. Based on these clinicopathological features, we proposed a diagnosis flow chart of adult-onset NIID. Our study suggested that the prevalence rate of adult-onset NIID may be higher than previously thought, and that NIID may be underdiagnosed. We should take NIID into account for differential diagnosis of leukoencephalopathy and neuropathy.


Subject(s)
Dementia/etiology , Muscle Weakness/etiology , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , Adolescent , Adult , Age of Onset , Aged , Female , Humans , Intranuclear Inclusion Bodies/pathology , Magnetic Resonance Imaging , Male , Middle Aged , Neurodegenerative Diseases/complications , Pedigree , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...