Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641354

ABSTRACT

One cannot survive without regularly urinating and defecating. People with neurological injury (spinal cord injury, traumatic brain injury, stroke) or disease (multiple sclerosis, Parkinson's disease, spina bifida) and many elderly are unable to voluntarily initiate voiding. The great majority of them require bladder catheters to void urine and "manual bowel programs" with digital rectal stimulation and manual extraction to void stool. Catheter-associated urinary tract infections frequently require hospitalization, while manual bowel programs are time-consuming (1-2 hours), stigmatizing, and cause rectal pain and discomfort. Laxatives and enemas produce defecation, but onset and duration are unpredictable, prolonged, and difficult to control, which can produce involuntary defecation and fecal incontinence. Patients with spinal cord injury (SCI) consider recovery of bladder and bowel function a higher priority than recovery of walking. Bladder and bowel dysfunction are a top reason for institutionalization of elderly. Surveys indicate that convenience, rapid onset and short duration, reliability and predictability, and efficient voiding are priorities of SCI individuals. Despite the severe, unmet, medical need; there is no literature regarding on-demand, rapid-onset, short-duration, drug-induced, voiding therapies. This article provides in depth discussion of recent discovery and development of two candidates for on-demand voiding therapies. The first, DTI-117, a neurokinin2 receptor agonist, induces both urination and defecation after systemic administration. The second, DTI-301, is a TRPV1 receptor agonist that induces defecation after intrarectal administration. The review also presents clinical studies of a combination drug therapy administered via iontophoresis and preclinical studies of neuromodulation devices that induce urination and defecation. Significance Statement Safe, effective, on-demand, rapid-onset, short-duration, drug-induced, voiding therapy could eliminate or reduce need for bladder catheters, manual bowel programs, and colostomies in patient populations that are unable to voluntarily initiate voiding. People with spinal injury place more importance on restoring bladder and bowel control than restoring their ability to walk. This paradigm-changing therapy would reduce stigmatism and healthcare costs while increasing convenience and quality of life.

2.
Can J Physiol Pharmacol ; 101(4): 171-179, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36716436

ABSTRACT

The feasibility of eliciting defecation and urination after intranasal (IN) or sublingual (SL) delivery of a small peptide NK2 receptor agonist, [Lys5, MeLeu9, Nle10]-NKA(4-10), was examined using prototype formulations in dogs. In anesthetized animals, administration of 100 or 300 µg/kg IN or 2.0-6.7 mg/kg SL increased colorectal peak pressure and area under the curve. Peak bladder pressure was also increased at the same doses, and this was accompanied by highly efficient voiding at normal physiological bladder pressure. The onset of these effects was rapid (≤2.5 min), and the primary contractions lasted ∼25 min, returning to baseline in <60 min. Slight hypotension lasting a few minutes and causing <10% change from baseline was detected after higher doses and was statistically significant after only 100 µg/kg IN. In conscious dogs, there was a dose-related increase in voiding responses and reduction in the latency to urinate and defecate after 300 and 1000 µg/kg IN; emesis was also observed at these doses. SL administration of 6.7 mg/kg induced urination within 10 min, but not defecation or emesis. These findings support the feasibility of developing a convenient dosage form of small peptide NK2 receptor agonists as on-demand defecation or urination therapies.


Subject(s)
Colorectal Neoplasms , Urinary Bladder , Dogs , Animals , Receptors, Neurokinin-2/agonists , Neurokinin A/pharmacology , Peptides/pharmacology , Vomiting
3.
J Neurotrauma ; 37(6): 868-876, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31642371

ABSTRACT

Acute administration of [Lys5,Me,Leu9,Nle10]-NKA(4-10) (LMN-NKA) produces contractions of the detrusor and rectum with voiding in intact and acutely spinal cord injured (SCI) rats. In the current study, the ability of LMN-NKA (10 µg/kg or 100 µg/kg, subcutaneous [SC], twice a day [bid]) or vehicle to induce voiding and defecation in chronic SCI rats was examined across 30 days. After the last day of administration, voiding response rates and bladder pressure (BP) responses to LMN-NKA (intravenous [IV] and SC) were evaluated under anesthesia. In conscious rats, LMN-NKA (100 µg/kg) produced dose-dependent micturition within 5 min, with response rates >90%, and voiding efficiency >80% in males and >60% in females, which remained stable across the 1-month test period. Similarly, LMN-NKA administration rapidly induced defecation, which also remained stable. Under anesthesia, LMN-NKA increased BP, voiding efficiency, and voiding response rates, which reached 100% at 3 and 10 µg/kg IV in males and females, respectively. SC administration produced 100% response rates in males (30 µg/kg) but only 71% in females (100 µg/kg). Efficacy in rats chronically treated with LMN-NKA was similar to naïve and vehicle-treated rats, except for reduced voiding efficiency in chronically dosed female rats (100 µg/kg). No differences in bladder weights or collagen-to-smooth muscle ratios in histological sections were seen between the groups. Thus neither tolerance, nor sensitization, to LMN-NKA-induced micturition and defecation occurs with chronic administration in rats with chronic SCI. Efficacy was higher in male than in female rats.


Subject(s)
Defecation/drug effects , Peptide Fragments/administration & dosage , Receptors, Neurokinin-2/agonists , Spinal Cord Injuries/drug therapy , Urination/drug effects , Animals , Defecation/physiology , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Male , Rats , Rats, Sprague-Dawley , Receptors, Neurokinin-2/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae/injuries , Urination/physiology
4.
Neuropeptides ; 77: 101956, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31324387

ABSTRACT

The effects of the neurokinin NK2 receptor agonist [Lys5,MeLeu9,Nle10]-NKA(4-10) (LMN-NKA) on bladder and colorectal function were examined in minipigs. In anesthetized animals, subcutaneous (SC) administration of 30-100 µg/kg increased peak bladder and colorectal pressures. Increases in bladder and colorectal pressure were inhibited by a 15 min pretreatment with the NK2 receptor antagonist GR 159897 (1 mg/kg intravenously (IV)). Bladder and colorectal pressures were also increased after IV (0.3 µg/kg), intranasal (IN; 100 µg/kg) and sublingual administration (SL; 5 mg/kg). There was a nonsignificant trend for hypotension (16 or 12% decrease in mean arterial pressure) after 100 µg/kg SC and 0.3 µg/kg IV, respectively, but not after 100 µg/kg IN or 5 mg/kg SL. In conscious minipigs, 30-300 µg/kg SC caused a dose-related increase in defecation that was accompanied by emesis in 38% of subjects receiving 300 µg/kg. Urination was increased after 100 µg/kg SC but not lower or higher doses. The peak plasma exposure (Cmax) after 100 µg/kg SC was 123 ng/mL, and area under the curve (AUC) was 1790 min * ng/mL. Defecation response rates (~82%) were maintained after SC administration of LMN-NKA (30 µg/kg) given 3 times daily over 5 consecutive days. Defecation rates were higher after a single dose of 100 µg/kg IN compared with vehicle, but this did not reach significance. After 7-10 mg/kg SL, 83% of animals urinated and defecated, and none had emesis. The data support the feasibility of developing a convenient and well-tolerated route of administration of LMN-NKA for human use. Minipigs may be a suitable species for toxicology studies with LMN-NKA due to the relatively low rate of emesis in this species.


Subject(s)
Colon/drug effects , Defecation/drug effects , Receptors, Neurokinin-2/agonists , Rectum/drug effects , Urinary Bladder/drug effects , Urination/drug effects , Animals , Indoles/pharmacology , Piperidines/pharmacology , Pressure , Receptors, Neurokinin-2/antagonists & inhibitors , Swine , Swine, Miniature
5.
Naunyn Schmiedebergs Arch Pharmacol ; 391(9): 907-914, 2018 09.
Article in English | MEDLINE | ID: mdl-29858647

ABSTRACT

The effects of the tachykinin NK2 receptor agonist LMN-NKA ([Lys5,MeLeu9,Nle10]-NKA(4-10)) on colorectal and arterial blood pressure were examined in anesthetized macaques. Intravenous (IV) administration of 1-100 µg/kg caused dose-related increases in colorectal pressure up to 120 mmHg above baseline, and area under the curve (AUC) up to 24,987 mmHg*s. This was accompanied at all doses by transient hypotension, with up to 26% reduction in mean arterial pressure (MAP) from baseline. Hypotension, but not the increase in colorectal pressure, was inhibited by a 10-min pretreatment with the NK1 receptor antagonist CP-99,994. In a pilot experiment using subcutaneous (SC) injection, a similar dose range of LMN-NKA (3-100 µg/kg) again appeared to increase colorectal pressure with a similar AUC (up to 18,546 mmHg*s) to that seen after IV injection, but lower peak amplitude (up to 49 mmHg). Unlike the effects of IV injection, hypotension was only present after the highest SC dose (100 µg/kg) in one of two animals. Pharmacokinetic analysis revealed markedly lower plasma exposures after SC compared with IV administration. Cmax was 39.6 versus 1070 ng/mL, and AUCinf was 627 versus 2090 ng/mL*min, respectively. These findings are consistent with previous observations in anesthetized dogs and indicate that the prokinetic effects of LMN-NKA may be achieved without hypotension using a route of administration that avoids unnecessarily high plasma exposures.


Subject(s)
Arterial Pressure/drug effects , Colon/drug effects , Neurokinin A/analogs & derivatives , Neurokinin A/administration & dosage , Receptors, Neurokinin-2/agonists , Rectum/drug effects , Administration, Intravenous , Anesthesia , Animals , Colon/physiology , Female , Injections, Subcutaneous , Macaca , Male , Neurokinin A/blood , Rectum/physiology
6.
J Pharmacol Exp Ther ; 366(1): 136-144, 2018 07.
Article in English | MEDLINE | ID: mdl-29728445

ABSTRACT

Tachykinin neurokinin 2 (NK2) receptor agonists may have potential to alleviate clinical conditions associated with bladder and gastrointestinal underactivity by stimulating contraction of visceral smooth muscle. The ability of [Lys5,MeLeu9,Nle10]-neurokinin A(4-10) (LMN-NKA) to elicit micturition and defecation was examined after repeated administration in groups of 2-10 conscious dogs. Administration of 10-100 µg/kg, i.v., four times daily for six consecutive days, reliably elicited micturition after ≥90% of doses and defecation after ≥50% of doses. Voiding occurred <4 minutes after dosing and was short lasting (<10 minutes). LMN-NKA was well tolerated, with emesis after ∼25% of doses at 100 µg/kg, i.v. Hypotension was induced by 100 µg/kg, i.v., of LMN-NKA but not by lower doses. Administration of 30-300 µg/kg, s.c., twice daily for seven consecutive days, reliably elicited both urination and defecation after 88%-100% of doses, and was accompanied by a high rate of emesis (50%-100%). The onset of voiding was rapid (<7 minutes) but was more prolonged than after intravenous administration (30-60 minutes). Emesis induced by 30 or 300 µg/kg, s.c., of LMN-NKA was significantly reduced (from 58% to 8% and from 96% to 54%, respectively) by a 30-minute pretreatment with the neurokinin 1 (NK1) receptor antagonist, (2S,3S)-N-(2-methoxybenzyl)-2-phenylpiperidin-3-amine (CP-99,994; 1 mg/kg, s.c.). The ability of selective NK2 receptor agonists to elicit on-demand voiding could potentially address a major unmet need in people lacking voluntary control of micturition and/or defecation. LMN-NKA unexpectedly activated NK1 receptors at doses that stimulated voiding, causing emesis and hypotension that may limit the clinical utility of nonselective NK2 receptor agonists.


Subject(s)
Defecation/drug effects , Hypotension/chemically induced , Peptide Fragments/pharmacology , Receptors, Neurokinin-1/metabolism , Receptors, Neurokinin-2/metabolism , Urination/drug effects , Vomiting/chemically induced , Animals , Consciousness , Dogs , Neurokinin A/chemistry , Peptide Fragments/adverse effects , Peptide Fragments/pharmacokinetics , Tissue Distribution
7.
Naunyn Schmiedebergs Arch Pharmacol ; 391(3): 299-308, 2018 03.
Article in English | MEDLINE | ID: mdl-29279967

ABSTRACT

Tachykinin NK2 receptor (NK2R) agonists have potential to alleviate clinical conditions associated with bladder and gastrointestinal under activity. The effects of agonists with differing selectivity for NK2R over NK1Rs on colorectal, bladder, and cardiovascular function were examined in anesthetized dogs. Intravenous (IV) administration of NKA, LMN-NKA ([Lys5,MeLeu9,Nle10]-NKA(4-10)), and [ß-Ala8]-NKA(4-10) caused a dose-related increase in colorectal pressure (up to 98 mmHg) that was blocked by pretreatment with the NK2R antagonist GR 159897 (1 mg/kg), and hypotension (decrease in mean arterial pressure of ~40 mmHg) that was blocked by the NK1R antagonist CP-99,994 (1 mg/kg). Despite the greater in vitro selectivity of LMN-NKA and [ß-Ala8]-NKA(4-10) for NK2R over NK1Rs compared with NKA, all 3 agonists increased colorectal pressure and caused hypotension within a similar dose range when administered as a bolus (0.1-300 µg/kg IV), or even as a slow IV infusion over 5 min (NKA; 0.02-0.6 µg/kg/min). In contrast, subcutaneous (SC) administration of LMN-NKA (3-10 µg/kg) increased colorectal pressure (up to 50 mmHg) and elicited micturition (≧ 85% voiding efficiency) without causing hypotension. NK2R agonists can produce rapid-onset, short-duration, colorectal contractions, and efficient voiding of urine without hypotension after SC administration, indicating that routes of administration that avoid the high plasma concentrations associated with IV dosing improve the separation between desired and unwanted pharmacodynamic effects. The potent hypotensive effect of NKA in dogs was unexpected based on published studies in humans in which IV infusion of NKA did not affect blood pressure at doses that increased gastrointestinal motility.


Subject(s)
Arterial Pressure/drug effects , Colon/drug effects , Neurokinin A/analogs & derivatives , Neurokinin A/pharmacology , Receptors, Neurokinin-1/physiology , Receptors, Neurokinin-2/physiology , Urinary Bladder/drug effects , Anesthesia , Animals , Colon/physiology , Dogs , Female , Heart Rate/drug effects , Indoles/pharmacology , Male , Neurokinin-1 Receptor Antagonists/pharmacology , Piperidines/pharmacology , Receptors, Neurokinin-2/agonists , Receptors, Neurokinin-2/antagonists & inhibitors , Urinary Bladder/physiology
8.
Eur J Pharmacol ; 819: 261-269, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29237540

ABSTRACT

The suitability of various neurokinin-2 (NK2) receptor agonists and routes of administration to elicit on-demand voiding of the bladder and bowel, as future therapy for individuals with spinal cord injury, was examined using a rat model. The current study examined the feasibility of alternative routes of administration, which are more practical for clinical use than intravenous (IV) administration. Voiding and isovolumetric cystometry were recorded in anesthetized, acutely spinalized, female rats after IV, subcutaneous (SC), intramuscular (IM), intranasal (IN), or sublingual (SL) administration of [Lys5,MeLeu9,Nle10]-NKA(4-10) (LMN-NKA). Administration of LMN-NKA (1-10µg/kg IV; 10-300µg/kg SC or IM; 15-1000µg/kg IN or 300-1500µg/kg SL) elicited rapid-onset, short-duration, dose-related increases in bladder pressure and voiding with the rank order for time of both onset and duration being IV < IN < SC = IM < SL. The incidence of voiding was dependent on the dose and route, with all routes resulting in a high voiding efficiency (~ 70%). Like LMN-NKA, neurokinin A (NKA 1-100µg/kg IV) and GR 64349 (0.1-30µg/kg IV or 1-300µg/kg SC) produced rapid-onset, short-duration increases in bladder pressure, as well as colorectal pressure. Administration of vehicle never produced bladder or rectal contractions or voiding. Transient hypotension was observed after IV injection of LMN-NKA, which was less pronounced after SC injection. Hypotension was not apparent with GR 64349. In conclusion, selective NK2 receptor agonists, administered through various non-IV routes of administration, may provide a safe, convenient, and efficacious method for inducing voiding.


Subject(s)
Peptides/pharmacology , Receptors, Neurokinin-2/agonists , Rectum/drug effects , Rectum/physiopathology , Spinal Cord Injuries/physiopathology , Urinary Bladder/drug effects , Urinary Bladder/physiopathology , Animals , Dose-Response Relationship, Drug , Female , Gastrointestinal Motility/drug effects , Muscle Contraction/drug effects , Peptides/chemistry , Peptides/pharmacokinetics , Pressure , Rats , Rats, Sprague-Dawley
9.
J Pharmacol Exp Ther ; 318(2): 772-81, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16690725

ABSTRACT

The excitatory neurotransmitter glutamate has been implicated in both migraine and persistent pain. The identification of the kainate receptor GLU(K5) in dorsal root ganglia, the dorsal horn, and trigeminal ganglia makes it a target of interest for these indications. We examined the in vitro and in vivo pharmacology of the competitive GLU(K5)-selective kainate receptor antagonist LY466195 [(3S,4aR,6S,8aR)-6-[[(2S)-2-carboxy-4,4-difluoro-1-pyrrolidinyl]-methyl]decahydro-3-isoquinolinecarboxylic acid)], the most potent GLU(K5) antagonist described to date. Comparisons were made to the competitive GLU(K5)/alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist LY293558 [(3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]-decahydroisoquinoline-3-carboxylic acid], other decahydroisoquinoline GLU(K5) receptor antagonists, and the noncompetitive AMPA receptor antagonist LY300168 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodi-azepine]. When characterized electrophysiologically in rat dorsal root ganglion neurons, LY466195 antagonized kainate (30 microM)-induced currents with an IC50 value of 0.045 +/- 0.011 microM. In HEK293 cells transfected with GLU(K5), GLU(K2)/GLU(K5), or GLU(K5)/GLU(K6) receptors, LY466195 produced IC50 values of 0.08 +/- 0.02, 0.34 +/- 0.17, and 0.07 +/- 0.02 microM, respectively. LY466195 was efficacious in a dural plasma protein extravasation (PPE) model of migraine with an ID100 value of 100 microg/kg i.v. LY466195 was also efficacious in the c-fos migraine model, with a dose of 1 microg/kg i.v. significantly reducing the number of Fos-positive cells in the rat nucleus caudalis after electrical stimulation of the trigeminal ganglion. Furthermore, LY466195 showed no contractile activity in the rabbit saphenous vein in vitro. The diethyl ester prodrug of LY466195 was also efficacious in the same PPE and c-fos models after oral administration at doses of 10 and 100 microg/kg, respectively while having no N-methyl-D-aspartate antagonist-like behavioral effects at oral doses up to 100 mg/kg.


Subject(s)
Isoquinolines/pharmacology , Receptors, Kainic Acid/antagonists & inhibitors , Animals , Benzodiazepines/pharmacology , Binding, Competitive/drug effects , Blood Proteins/metabolism , Calcium/metabolism , Electrophysiology , Excitatory Amino Acid Antagonists/pharmacology , Humans , In Vitro Techniques , Ligands , Male , Migraine Disorders/metabolism , Motor Activity/drug effects , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Neurons/drug effects , Neurons/metabolism , Phencyclidine/pharmacology , Proto-Oncogene Proteins c-fos/biosynthesis , Rabbits , Rats , Receptors, AMPA/antagonists & inhibitors , Saphenous Vein/cytology , Saphenous Vein/drug effects , Transfection
10.
J Med Chem ; 45(20): 4383-6, 2002 Sep 26.
Article in English | MEDLINE | ID: mdl-12238915

ABSTRACT

Amino diacid 3, a highly selective competitive GluR5 kainate receptor antagonist, exhibited high GluR5 receptor affinity and selectivity over other glutamate receptors. Its diethyl ester prodrug 4 was orally active in two models of migraine: the neurogenic dural plasma protein extravasation model and the nucleus caudalis c-fos expression model. These data suggest that a GluR5 kainate receptor antagonist might be an efficacious antimigraine therapy with a novel mechanism of action.


Subject(s)
Carboxylic Acids/chemical synthesis , Esters/chemical synthesis , Excitatory Amino Acid Antagonists/chemical synthesis , Isoquinolines/chemical synthesis , Migraine Disorders/drug therapy , Prodrugs/chemical synthesis , Receptors, Kainic Acid/antagonists & inhibitors , Acute Disease , Administration, Oral , Animals , Biological Availability , Calcium/metabolism , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Cell Line , Disease Models, Animal , Dose-Response Relationship, Drug , Esters/chemistry , Esters/pharmacology , Excitatory Amino Acid Antagonists/chemistry , Excitatory Amino Acid Antagonists/pharmacology , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Radioligand Assay , Rats , Rats, Wistar
11.
Brain Res ; 946(2): 290-7, 2002 Aug 16.
Article in English | MEDLINE | ID: mdl-12137933

ABSTRACT

In the present study, the role of 5-HT(1A) receptors in control of lower urinary tract function in cats was examined using 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) as agonists and WAY100635 and LY206130 as antagonists. Bladder function was assessed using cystometric infusion of saline or 0.5% acetic acid to produce bladder irritation. External urethral sphincter (EUS) function was assessed using electromyographic (EMG) recordings of activity recorded during cystometry or by recording electrically evoked pudendal reflexes. Both 5-HT(1A) receptor agonists caused dose-dependent decreases in bladder activity and increases in EUS EMG activity under conditions of acetic acid infusion. 5-HT(1A) receptor antagonists reversed both the bladder-inhibitory and sphincter-facilitatory effects. Thus, 5-HT(1A) receptor activation can have opposite effects on nociceptive afferent processing depending upon the efferent response being measured. During saline infusion of the bladder, 8-OH-DPAT produced moderate inhibition of bladder activity and had no significant effect on sphincter electromyographic (EMG) activity. 8-OH-DPAT either had no effect, or inhibited, low-threshold electrically evoked pudendal reflexes. These findings indicate that 5-HT(1A) receptor stimulation is inhibitory to bladder function in cats, especially under conditions where the bladder is hyperactive due to irritation. Furthermore, these bladder-inhibitory effects are the exact opposite of the bladder-excitatory effects of 8-OH-DPAT reported in rats. 5-HT(1A) receptor stimulation increases EUS motoneuron activity when driven by nociceptive bladder afferent inputs but not when driven by non-nociceptive afferent inputs. In summary, 5-HT(1A) receptor agonists facilitate a nociceptor-driven spinal reflex (sphincter activity) but inhibit a nociceptor-driven supraspinal reflex (micturition). This pattern of activity would facilitate urine storage and may be important under 'fight-or-flight' conditions when serotonergic activity is high.


Subject(s)
Receptors, Serotonin/drug effects , Urinary Tract/drug effects , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Acetic Acid , Animals , Cats , Cystitis/physiopathology , Dose-Response Relationship, Drug , Electric Stimulation , Electromyography , Female , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Muscle, Smooth/innervation , Piperazines/pharmacology , Pyridines/pharmacology , Receptors, Serotonin, 5-HT1 , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Urethra/drug effects , Urethra/innervation , Urethra/physiology , Urinary Bladder/drug effects , Urinary Bladder/innervation , Urinary Bladder/physiology , Urinary Tract/innervation
12.
Life Sci ; 71(11): 1227-36, 2002 Aug 02.
Article in English | MEDLINE | ID: mdl-12106588

ABSTRACT

Previous studies showed that the dual serotonin (5-hydroxytryptamine, 5-HT) and norepinephrine (NE) reuptake inhibitor, duloxetine, increases bladder capacity and urethral sphincter electromyographic (EMG) activity in a cat model of acetic acid-induced bladder irritation. The present study aimed to determine the relative importance of 5-HT versus NE reuptake inhibition for mediating these effects by examining drugs that are selective for either the 5-HT or NE system or both. Similar to duloxetine, venlafaxine (0.1 to 10 mg/kg), also a dual serotonin and norepinephrine reuptake inhibitor, produced marked increases in bladder capacity and EMG activity that were reversed by methiothepin (0.3 mg/kg). S-norfluoxetine (0.01 to 10 mg/kg), a serotonin selective reuptake inhibitor, produced small but significant increases in bladder capacity and EMG activity at doses of 3 and 10 mg/kg. Thionisoxetine (0.01 to 3.0 mg/kg), a NE selective reuptake inhibitor, produced no effects on bladder capacity or sphincter EMG activity. Surprisingly, co-administration of thionisoxetine and s-norfluoxetine up to doses of 1 mg/kg of each compound produced no effect on lower urinary tract function. These doses were the maximum that could be administered in combination due to drug-induced emergence of skeletal muscle activity in chloralose-anesthetized animals. These results indicate that there are unexplained pharmacological differences between the effects of single compounds that exhibit dual NE and 5-HT reuptake inhibition and a combination of compounds that exhibit selective NE and 5-HT reuptake inhibition on lower urinary tract function.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Cats/physiology , Cyclohexanols/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Thiophenes/pharmacology , Urethra/drug effects , Urinary Bladder/drug effects , Acetic Acid/pharmacology , Administration, Intravesical , Animals , Duloxetine Hydrochloride , Electromyography , Female , Fluoxetine/analogs & derivatives , Fluoxetine/pharmacology , Humans , Methiothepin/pharmacology , Serotonin Antagonists/pharmacology , Urethra/physiology , Urinary Bladder/physiology , Venlafaxine Hydrochloride
SELECTION OF CITATIONS
SEARCH DETAIL
...