Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 9(7)2017 Jun 24.
Article in English | MEDLINE | ID: mdl-30970923

ABSTRACT

N-alkoxybenzyl aromatic polyamides were synthesized by polycondensation of N-alkoxybenzyl aromatic diamine with equimolar dicarboxylic acid chloride in the presence of 2.2 equiv. of pyridine at room temperature for 2 days. The obtained polyamides were mainly cyclic polymers, as determined by means of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and showed higher solubility in organic solvents than unprotected aromatic polyamides. Photodeprotection of N-alkoxybenzyl aromatic polyamide film containing photo acid generator (PAG) proceeded well under UV irradiation (5 J/cm²), followed by heating at 130 °C for 15 min. The nature of the polymer end groups of N-alkoxybenzyl aromatic polyamides was found to be crucial for photodeprotection reactivity. These polymers are promising candidates for photosensitive heat-resistant materials for fine Cu wiring formation by electroless Cu plating of high-density semiconductor packaging substrates.

2.
Chem Pharm Bull (Tokyo) ; 53(9): 1167-70, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16141589

ABSTRACT

Many researchers have stated that eugenol might inhibit lipid peroxidation at the stage of initiation, propagation, or both, and many attempts have been made to elucidate the mechanism of its antioxidant activity. Nevertheless, details of its mechanism are still obscure. This study was carried out to investigate the trapping effect of eugenol on hydroxyl radical generated from L-3,4-dihydroxyphenylalanine (DOPA) in MiliQ water and the generation mechanism of the hydroxyl radical by this system which uses no metallic factor. This was studied by adding L-DOPA and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) to phosphate buffered saline (PBS) or MiliQ water, and the generation of hydroxyl radical was detected on an ESR spectrum. By this method, the effect of antioxidants was detected as a modification of ESR spectra. We found that the eugenol trapped hydroxyl radicals directly, because it had no iron chelating action, did not trap L-DOPA semiquinone radical and inhibited hydroxyl radicals with or without iron ion.


Subject(s)
Antiparkinson Agents/chemistry , Eugenol/chemistry , Hydroxyl Radical/chemistry , Levodopa/chemistry , Oxidants/chemistry , Aniline Compounds/chemistry , Chelating Agents/chemistry , Electron Spin Resonance Spectroscopy , Iron Chelating Agents/chemistry , Pyrogallol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...