Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nature ; 629(8010): 62-66, 2024 May.
Article in English | MEDLINE | ID: mdl-38632410

ABSTRACT

Thorium-229 (229Th) possesses an optical nuclear transition between the ground state (229gTh) and low-lying isomer (229mTh). A nuclear clock based on this nuclear-transition frequency is expected to surpass existing atomic clocks owing to its insusceptibility to surrounding fields1-5. In contrast to other charge states, triply charged 229Th (229Th3+) is the most suitable for highly accurate nuclear clocks because it has closed electronic transitions that enable laser cooling, laser-induced fluorescence detection and state preparation of ions1,6-8. Although laser spectroscopic studies of 229Th3+ in the nuclear ground state have been performed8, properties of 229mTh3+, including its nuclear decay lifetime that is essential to specify the intrinsic linewidth of the nuclear-clock transition, remain unknown. Here we report the trapping of 229mTh3+ continuously supplied by a 233U source and the determination of nuclear decay half-life of the isolated 229mTh3+ to be 1,400 - 300 + 600 s through nuclear-state-selective laser spectroscopy. Furthermore, by determining the hyperfine constants of 229mTh3+, we reduced the uncertainty of the sensitivity of the 229Th nuclear clock to variations in the fine-structure constant by a factor of four. These results offer key parameters for the 229Th3+ nuclear clock and its applications in the search for new physics.

2.
Opt Express ; 28(10): 15112-15121, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403544

ABSTRACT

We performed the first direct measurement of the frequency ratio between a mercury (199Hg) and an ytterbium (171Yb) optical lattice clock to find νHg/νYb = 2.177 473 194 134 565 07(19) with the fractional uncertainty of 8.8 × 10-17. The ratio is in excellent agreement with expectations from the ratios νHg/νSr and νYb/νSr obtained previously in comparisons against a strontium (87Sr) optical lattice clock. The completed closure (νHg/νYb)(νYb/νSr)(νSr/νHg) - 1 = 0.4(1.3) × 10-16 tests the frequency reproducibility of the optical lattice clocks beyond what is achievable in comparison against the current realization of the second in the International System of Units (SI).

3.
Opt Express ; 28(7): 9186-9197, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225530

ABSTRACT

We report a cascaded optical fiber link which connects laboratories in RIKEN, the University of Tokyo, and NTT within a 100-km region using a transfer light at 1397 nm, a subharmonic of the Sr clock frequency. The multiple cascaded link employing several laser repeater stations benefits from a wide feedback bandwidth for fiber noise compensation, which allows constructing optical lattice clock networks based on the master-slave configuration. We developed the laser repeater stations based on planar lightwave circuits to significantly reduce the interferometer noise for improved link stability. We implemented a 240-km-long cascaded link in a UTokyo-NTT-UTokyo loop using light sent from RIKEN via a 30-km-long link. In environments with large fiber noise, the link instability is 3 × 10-16 at an averaging time of 1 s and reaches 1 × 10-18 at 2,600 s.

4.
Phys Rev Lett ; 121(26): 263202, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30636149

ABSTRACT

We experimentally investigate the lattice-induced light shift by the electric-quadrupole (E2) and magnetic-dipole (M1) polarizabilities and the hyperpolarizability in Sr optical lattice clocks. Precise control of the axial as well as the radial motion of atoms in a one-dimensional lattice allows observing the E2-M1 polarizability difference. Measured polarizabilities determine an operational lattice depth to be 72(2)E_{R}, where the total light shift cancels to the 10^{-19} level, over a lattice-intensity variation of about 30%. This operational trap depth and its allowable intensity range conveniently coincide with experimentally feasible operating conditions for Sr optical lattice clocks.

5.
Opt Lett ; 41(4): 705-8, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26872168

ABSTRACT

Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

6.
Rev Sci Instrum ; 86(11): 115106, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26628171

ABSTRACT

We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

7.
Phys Rev Lett ; 114(23): 230801, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26196788

ABSTRACT

We report on a frequency ratio measurement of a (199)Hg-based optical lattice clock referencing a (87)Sr-based clock. Evaluations of lattice light shift, including atomic-motion-dependent shift, enable us to achieve a total systematic uncertainty of 7.2×10(-17) for the Hg clock. The frequency ratio is measured to be νHg/νSr=2.629 314 209 898 909 60(22) with a fractional uncertainty of 8.4×10(-17), which is smaller than the uncertainty of the realization of the International System of Units (SI) second, i.e., the SI limit.

8.
Nat Commun ; 5: 4096, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24934478

ABSTRACT

Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

9.
Phys Rev Lett ; 103(15): 153004, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19905634

ABSTRACT

In a standing wave of light, a difference in spatial distributions of multipolar atom-field interactions may introduce atomic-motion dependent clock uncertainties in optical lattice clocks. We show that the magic wavelength can be defined so as to eliminate the spatial mismatch in electric dipole, magnetic dipole, and electric quadrupole interactions for specific combinations of standing waves by allowing a spatially constant light shift arising from the latter two interactions. Experimental prospects of such lattices used with a blue magic wavelength are discussed.

10.
Science ; 320(5884): 1734-8, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18583603

ABSTRACT

Precision metrology and quantum measurement often demand that matter be prepared in well-defined quantum states for both internal and external degrees of freedom. Laser-cooled neutral atoms localized in a deeply confining optical potential satisfy this requirement. With an appropriate choice of wavelength and polarization for the optical trap, two electronic states of an atom can experience the same trapping potential, permitting coherent control of electronic transitions independent of the atomic center-of-mass motion. Here, we review a number of recent experiments that use this approach to investigate precision quantum metrology for optical atomic clocks and coherent control of optical interactions of single atoms and photons within the context of cavity quantum electrodynamics. We also provide a brief survey of promising prospects for future work.

11.
Nature ; 435(7040): 321-4, 2005 May 19.
Article in English | MEDLINE | ID: mdl-15902252

ABSTRACT

The precision measurement of time and frequency is a prerequisite not only for fundamental science but also for technologies that support broadband communication networks and navigation with global positioning systems (GPS). The SI second is currently realized by the microwave transition of Cs atoms with a fractional uncertainty of 10(-15) (ref. 1). Thanks to the optical frequency comb technique, which established a coherent link between optical and radio frequencies, optical clocks have attracted increasing interest as regards future atomic clocks with superior precision. To date, single trapped ions and ultracold neutral atoms in free fall have shown record high performance that is approaching that of the best Cs fountain clocks. Here we report a different approach, in which atoms trapped in an optical lattice serve as quantum references. The 'optical lattice clock' demonstrates a linewidth one order of magnitude narrower than that observed for neutral-atom optical clocks, and its stability is better than that of single-ion clocks. The transition frequency for the Sr lattice clock is 429,228,004,229,952(15) Hz, as determined by an optical frequency comb referenced to the SI second.

12.
Opt Express ; 13(14): 5253-62, 2005 Jul 11.
Article in English | MEDLINE | ID: mdl-19498517

ABSTRACT

We have established a transportable frequency measurement system using an optical frequency comb linked to a commercial Cs atomic clock, which is in turn linked to international atomic time (TAI) through global positioning system (GPS) time. An iodine-stabilized Nd:YAG laser is used as a flywheel in the frequency measurement system. This system is used to measure the absolute frequency of the clock transition of (87)Sr in an optical lattice. We obtained a fractional uncertainty of 2x10(-14) in the frequency measurement with a total averaging time of ~ 10(5) s over 9 days.

13.
Phys Rev Lett ; 92(15): 153004, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-15169283

ABSTRACT

We have measured the lifetime of the 5s5p 3P2 metastable state of strontium atoms by magneto-optically trapping the decayed atoms to the ground state, which allowed sensitive detection of the rare decay events. We found that the blackbody radiation-induced decay was the dominant decay channel for the state at T=300 K. The lifetime was determined to be 520(+310)(-140) s in the limit of zero temperature, arguably the longest lifetime ever determined in a laboratory environment.

14.
Phys Rev Lett ; 91(22): 223001, 2003 Nov 28.
Article in English | MEDLINE | ID: mdl-14683233

ABSTRACT

We report on the spectroscopy of the 5s(2) 1S0(F=9/2)-->5s5p 3P0(F=9/2) clock transition of 87Sr atoms (natural linewidth of 1 mHz) trapped in a one-dimensional optical lattice. Recoilless transitions with a linewidth of 0.7 kHz as well as the vibrational structure of the lattice potential were observed. By investigating the wavelength dependence of the carrier linewidth, we determined the magic wavelength, where the light shift in the clock transition vanishes, to be 813.5+/-0.9 nm.

15.
Phys Rev Lett ; 91(17): 173005, 2003 Oct 24.
Article in English | MEDLINE | ID: mdl-14611343

ABSTRACT

An ultrastable optical clock based on neutral atoms trapped in an optical lattice is proposed. Complete control over the light shift is achieved by employing the 5s(2) 1S0-->5s5p 3P0 transition of 87Sr atoms as a "clock transition." Calculations of ac multipole polarizabilities and dipole hyperpolarizabilities for the clock transition indicate that the contribution of the higher-order light shifts can be reduced to less than 1 mHz, allowing for a projected accuracy of better than 10(-17).

16.
Phys Rev Lett ; 91(5): 053001, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12906592

ABSTRACT

Recoil-free as well as Doppler-free spectroscopy was demonstrated on the 1S0-3P1 transition of Sr atoms confined in a one-dimensional optical lattice. By investigating the wavelength and polarization dependence of the ac Stark shift acting on the 1S0 and 3P1(m(J)=0) states, we determined the wavelength where the Stark shifts for both states coincide. This Stark-free optical lattice, allowing the purturbation-free spectroscopy of trapped atoms, may keep neutral-atom based optical standards competitive with single-ion standards.

17.
Phys Rev Lett ; 90(11): 113002, 2003 Mar 21.
Article in English | MEDLINE | ID: mdl-12688925

ABSTRACT

A dynamic magneto-optical trap, which relies on the rapid randomization of population in Zeeman substates, has been demonstrated for fermionic strontium atoms on the 1S0-3P1 intercombination transition. The obtained sample, 1x10(6) atoms at a temperature of 2 microK in the trap, was further Doppler cooled and polarized in a far-off resonant optical lattice to achieve 2 times the Fermi temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...