Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(48): 53916-53927, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36398970

ABSTRACT

Recently, superionic thermoelectrics have attracted enormous attention due to their ultralow thermal conductivity and high figure-of-merit (zT). However, their high zT is generally obtained deep inside the superionic phase, e.g., near 1000 K in Cu2X (X: chalcogen atom) family despite a relatively low superionic transition temperature of ∼400 K. At such high temperatures, the liquid-like flow of the metal ions results in material's degradation. Here, we present thermoelectric properties of superionic Ag2Te synthesized by various methods. The sintered Ag2Te samples are shown to exhibit an unpredictable behavior with respect to the sign of thermopower (S) in the superionic phase and the magnitude of electrical conductivity (σ). We overcome this issue using an all-room-temperature fabrication technique leading to an excellent reproducibility from one sample to another. To improve the zT of Ag2Te beyond the phonon-liquid electron-crystal limit (∼0.64 at 575 K in the ingot samples), we adopted a heirarchical nanostructuring technique, which effectively suppressed the thermal conductivity, leading to a significant improvement in the zT values for both n-type and p-type samples. We obtained zT of 1.2 in the n-type and 0.64 in the p-type Ag2Te at 570 K. These values supersede the zT of any Ag2Te previously reported. At 570 K, for our ball-milled/cold-pressed samples, the critical current density for metal-ion migration exceeds 15 A cm-2, which further confirms that Ag2Te is a promising thermoelectric material. Our results are supported by first-principles density functional theory calculations of the electronic and thermal properties.

2.
Nanotechnology ; 33(15)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-34952536

ABSTRACT

A novel SnSe nanoflake system is explored for its thermoelectric properties from both experiments andab initiostudy. The nanoflakes of the low temperature phase of SnSe (Pnma) are synthesized employing a fast and efficient refluxing method followed by spark plasma sintering at two different temperatures. We report an enhanced power factor (12-67µW mK-2in the temperature range 300-600 K) in our p-type samples. We find that the prime reason for a high PF in our samples is a significantly improved electrical conductivity (1050-2180 S m-1in the temperature range 300-600 K). From ourab initioband structure calculations accompanied with the models of temperature and surface dependent carrier scattering mechanisms, we reveal that an enhanced electrical conductivity is due to the reduced carrier-phonon scattering in our samples. The transport calculations are performed using the Boltzmann transport equation within relaxation time approximation. With our combined experimental and theoretical study, we demonstrate that the thermoelectric properties of p-type Pnma-SnSe could be improved by tuning the carrier scattering mechanisms with a control over the spark plasma sintering temperature.

3.
Phys Rev Lett ; 119(7): 075902, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28949692

ABSTRACT

We use ab initio calculations to predict the thermal conductivity of cubic SiC with different types of defects. An excellent quantitative agreement with previous experimental measurements is found. The results unveil that B_{C} substitution has a much stronger effect than any of the other defect types in 3C-SiC, including vacancies. This finding contradicts the prediction of the classical mass-difference model of impurity scattering, according to which the effects of B_{C} and N_{C} would be similar and much smaller than that of the C vacancy. The strikingly different behavior of the B_{C} defect arises from a unique pattern of resonant phonon scattering caused by the broken structural symmetry around the B impurity.

4.
J Phys Condens Matter ; 25(36): 365403, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23941815

ABSTRACT

The development of simplified models for the simulation of thermodynamic and thermal transport properties in random alloys is of great importance. In this paper we show how a simple second nearest neighbour model can reliably capture the lattice dynamics of Si(x)Ge(1-x) alloys. The model parameters are extracted from DFT-calculated force constant matrices for pure Si, pure Ge and the Si0.5Ge0.5 ordered alloy. We extract the nearest neighbour contributions directly from density functional theory, whereas effective interactions are obtained for the second nearest neighbour contributions. We demonstrate how the thermal properties, including the expansion coefficient, can be reliably reproduced and that the model is transferable to random Si(x)Ge(1-x) alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...