Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 18(37): 7051-7063, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36048579

ABSTRACT

Autophoretic microswimmers self-propel via surface interactions with a surrounding solute fuel. Chemically-active filaments are an exciting new microswimmer design that augments traditional autophoretic microswimmers, such as spherical Janus particles, with extra functionality inherent to their slender filament geometry. Slender Phoretic Theory (SPT) was developed by Katsamba et al. to analyse the dynamics of chemically-active filaments with arbitrary three-dimensional shape and chemical patterning. SPT provides a line integral solution for the solute concentration field and slip velocity on the filament surface. In this work, we exploit the generality of SPT to calculate a number of new, non-trivial analytical solutions for slender autophoretic microswimmers, including a general series solution for phoretic filaments with arbitrary geometry and surface chemistry, a universal solution for filaments with a straight centreline, and explicit solutions for some canonical shapes useful for practical applications and benchmarking numerical code. Many common autophoretic particle designs include discrete jumps in surface chemistry; here we extend our SPT to handle such discontinuities, showing that they are regularised by a boundary layer around the jump. Since our underlying framework is linear, combinations of our results provide a library of analytic solutions that will allow researchers to probe the interplay of activity patterning and shape.

2.
Phys Rev E ; 99(5-1): 053107, 2019 May.
Article in English | MEDLINE | ID: mdl-31212530

ABSTRACT

Flexible filaments moving in viscous fluids are ubiquitous in the natural microscopic world. For example, the swimming of bacteria and spermatozoa as well as important physiological functions at organ level, such as the cilia-induced motion of mucus in the lungs, or individual cell level, such as actin filaments or microtubules, all employ flexible filaments moving in viscous fluids. As a result of fluid-structure interactions, a variety of nonlinear phenomena may arise in the dynamics of such moving flexible filaments. In this paper we derive the mathematical tools required to study filament-driven propulsion in the asymptotic limit of stiff filaments. Motion in the rigid limit leads to hydrodynamic loads which deform the filament and impact the filament propulsion. We first derive the general mathematical formulation and then apply it to the case of a helical filament, a situation relevant for the swimming of flagellated bacteria and for the transport of artificial, magnetically actuated motors. We find that, as a result of flexibility, the helical filament is either stretched or compressed (conforming previous studies) and additionally its axis also bends, a result which we interpret physically. We then explore and interpret the dependence of the perturbed propulsion speed due to the deformation on the relevant dimensionless dynamic and geometric parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...