Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Neurosci ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951126

ABSTRACT

The field of chronobiology has advanced significantly since ancient observations of natural rhythms. The intricate molecular architecture of circadian clocks, their hierarchical organization within the mammalian body, and their pivotal roles in organ physiology highlight the complexity and significance of these internal timekeeping mechanisms. In humans, circadian phenotypes exhibit considerable variability among individuals and throughout the individual's lifespan. A fundamental challenge in mechanistic studies of human chronobiology arises from the difficulty of conducting serial sampling from most organs. The concept of studying circadian clocks in vitro relies on the groundbreaking discovery by Ueli Schibler and colleagues that nearly every cell in the body harbours autonomous molecular oscillators. The advent of circadian bioluminescent reporters has provided a new perspective for this approach, enabling high-resolution continuous measurements of cell-autonomous clocks in cultured cells, following in vitro synchronization pulse. The work by Steven A. Brown has provided compelling evidence that clock characteristics assessed in primary mouse and human skin fibroblasts cultured in vitro represent a reliable estimation of internal clock properties in vivo. The in vitro approach for studying molecular human clocks in cultured explants and primary cells, pioneered by Steve Brown, represents an invaluable tool for assessing inter-individual differences in circadian characteristics alongside comprehensive genetic, biochemical and functional analyses. In a broader context, this reliable and minimally invasive approach offers a unique perspective for unravelling the functional inputs and outputs of oscillators operative in nearly any human tissue in physiological contexts and across various pathologies.

2.
Genome Biol ; 25(1): 128, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773499

ABSTRACT

BACKGROUND: Cellular iron homeostasis is regulated by iron regulatory proteins (IRP1 and IRP2) that sense iron levels (and other metabolic cues) and modulate mRNA translation or stability via interaction with iron regulatory elements (IREs). IRP2 is viewed as the primary regulator in the liver, yet our previous datasets showing diurnal rhythms for certain IRE-containing mRNAs suggest a nuanced temporal control mechanism. The purpose of this study is to gain insights into the daily regulatory dynamics across IRE-bearing mRNAs, specific IRP involvement, and underlying systemic and cellular rhythmicity cues in mouse liver. RESULTS: We uncover high-amplitude diurnal oscillations in the regulation of key IRE-containing transcripts in the liver, compatible with maximal IRP activity at the onset of the dark phase. Although IRP2 protein levels also exhibit some diurnal variations and peak at the light-dark transition, ribosome profiling in IRP2-deficient mice reveals that maximal repression of target mRNAs at this timepoint still occurs. We further find that diurnal regulation of IRE-containing mRNAs can continue in the absence of a functional circadian clock as long as feeding is rhythmic. CONCLUSIONS: Our findings suggest temporally controlled redundancy in IRP activities, with IRP2 mediating regulation of IRE-containing transcripts in the light phase and redundancy, conceivably with IRP1, at dark onset. Moreover, we highlight the significance of feeding-associated signals in driving rhythmicity. Our work highlights the dynamic nature and regulatory complexity in a metabolic pathway that had previously been considered well-understood.


Subject(s)
Circadian Rhythm , Iron Regulatory Protein 1 , Iron Regulatory Protein 2 , Iron , Liver , RNA, Messenger , Animals , Iron Regulatory Protein 1/metabolism , Iron Regulatory Protein 1/genetics , Iron Regulatory Protein 2/metabolism , Iron Regulatory Protein 2/genetics , Circadian Rhythm/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Mice , Liver/metabolism , Iron/metabolism , Gene Expression Regulation , Response Elements , Mice, Inbred C57BL , Male , Feeding Behavior
3.
Sci Adv ; 9(2): eade2828, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36638184

ABSTRACT

Nonsense-mediated messenger RNA (mRNA) decay (NMD) has been intensively studied as a surveillance pathway that degrades erroneous transcripts arising from mutations or RNA processing errors. While additional roles in physiological control of mRNA stability have emerged, possible functions in mammalian physiology in vivo remain unclear. Here, we created a conditional mouse allele that allows converting the NMD effector nuclease SMG6 from wild-type to nuclease domain-mutant protein. We find that NMD down-regulation affects the function of the circadian clock, a system known to require rapid mRNA turnover. Specifically, we uncover strong lengthening of free-running circadian periods for liver and fibroblast clocks and direct NMD regulation of Cry2 mRNA, encoding a key transcriptional repressor within the rhythm-generating feedback loop. Transcriptome-wide changes in daily mRNA accumulation patterns in the entrained liver, as well as an altered response to food entrainment, expand the known scope of NMD regulation in mammalian gene expression and physiology.


Subject(s)
Circadian Clocks , Nonsense Mediated mRNA Decay , Animals , Mice , Circadian Clocks/genetics , Codon, Nonsense/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
4.
Methods Mol Biol ; 2482: 217-242, 2022.
Article in English | MEDLINE | ID: mdl-35610430

ABSTRACT

There is high interest in investigating the daily dynamics of gene expression in mammalian organs, for example, in liver. Such studies help to elucidate how and with what kinetics peripheral clocks integrate circadian signals from the suprachiasmatic nucleus, which harbors the circadian master pacemaker, with other systemic and environmental cues, such as those associated with feeding and hormones. Organ sampling around the clock, followed by the analysis of RNA and/or proteins, is the most commonly used procedure in assessing rhythmic gene expression. However, this method requires large cohorts of animals and is only applicable to behaviorally rhythmic animals whose phases are known. Real-time recording of gene expression rhythms using luciferase reporters has emerged as a powerful method to acquire continuous, high-resolution datasets from freely moving individual mice. Here, we share our experience and protocols with this technique, using the RT-Biolumicorder setup.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression , Gene Expression Regulation , Liver/metabolism , Luciferases/metabolism , Mammals/genetics , Mice , Suprachiasmatic Nucleus/metabolism
5.
Elife ; 102021 12 13.
Article in English | MEDLINE | ID: mdl-34895464

ABSTRACT

In the mouse, Period-2 (Per2) expression in tissues peripheral to the suprachiasmatic nuclei (SCN) increases during sleep deprivation and at times of the day when animals are predominantly awake spontaneously, suggesting that the circadian sleep-wake distribution directly contributes to the daily rhythms in Per2. We found support for this hypothesis by recording sleep-wake state alongside PER2 bioluminescence in freely behaving mice, demonstrating that PER2 bioluminescence increases during spontaneous waking and decreases during sleep. The temporary reinstatement of PER2-bioluminescence rhythmicity in behaviorally arrhythmic SCN-lesioned mice submitted to daily recurring sleep deprivations substantiates our hypothesis. Mathematical modeling revealed that PER2 dynamics can be described by a damped harmonic oscillator driven by two forces: a sleep-wake-dependent force and an SCN-independent circadian force. Our work underscores the notion that in peripheral tissues the clock gene circuitry integrates sleep-wake information and could thereby contribute to behavioral adaptability to respond to homeostatic requirements.


Circadian rhythms are daily cycles in behavior and physiology which repeat approximately every 24 hours. The master regulator of these rhythms is located in a small part of the brain called the supra-chiasmatic nucleus. This brain structure regulates the timing of sleep and wakefulness and is also thought to control the daily rhythms of cells throughout the body on a molecular level. It does this by synchronizing the activity of a set of genes called clock genes. Under normal conditions, the levels of proteins coded for by clock genes change throughout the day following a rhythm that matches sleep-wake patterns. However, keeping animals and humans awake at their preferred sleeping times affects the protein levels of clock genes in many tissues of the body. This suggests that, in addition to the supra-chiasmatic nucleus, sleep-wake cycles may also influence clock-gene rhythms throughout the body. To test this theory, Hoekstra, Jan et al. measured the levels of PERIOD-2, a protein coded for by the clock gene Period-2, while tracking sleep-wake states in mice. They did this by imaging a bioluminescent version of the PERIOD-2 protein in the brain and the kidneys, at the same time as they recorded the brain activity, movement and muscle response of animals. Results showed that PERIOD-2 increased on waking and decreased when mice fell asleep. Additionally, in mice lacking a circadian rhythm in sleep-wake behavior ­ whose changes in PERIOD-2 levels with respect to time were greatly reduced ­ imposing a regular sleep-wake cycle restored normal PERIOD-2 rhythmicity. Next, Hoekstra, Jan et al. developed a mathematical model to understand how sleep-wake cycles together with circadian rhythms affect clock-gene activity in the brain and kidneys. Computer simulations suggested that sleep-wake cycles and circadian factors act as forces of comparable strength driving clock-gene dynamics. Both need to act in concert to keep clock-genes rhythmic. The model also predicted the large and immediate effects of sleep deprivation on PERIOD-2 levels, giving further credence to the idea that waking accelerated clock-gene rhythms while sleeping slowed them down. Modelling also suggested that having regular clock-gene rhythms protects against sleep disturbances. In summary, this work shows how sleep patterns contribute to the daily rhythms in clock genes in the brain and body. The findings support the idea that well-timed sleep-wake schedules could help people to adjust to new time zones. It might also be useful to inform other strategies to reduce the health impacts of shift work.


Subject(s)
Circadian Rhythm/genetics , Period Circadian Proteins/genetics , Wakefulness/genetics , Animals , Homeostasis , Male , Mice , Mice, Inbred C57BL , Models, Theoretical , Sleep , Suprachiasmatic Nucleus/metabolism
6.
Curr Biol ; 31(22): 5009-5023.e7, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34648731

ABSTRACT

To understand what makes sleep vulnerable in disease, it is useful to look at how wake-promoting mechanisms affect healthy sleep. Wake-promoting neuronal activity is inhibited during non-rapid-eye-movement sleep (NREMS). However, sensory vigilance persists in NREMS in animals and humans, suggesting that wake promotion could remain functional. Here, we demonstrate that consolidated mouse NREMS is a brain state with recurrent fluctuations of the wake-promoting neurotransmitter noradrenaline on the ∼50-s timescale in the thalamus. These fluctuations occurred around mean noradrenaline levels greater than the ones of quiet wakefulness, while noradrenaline (NA) levels declined steeply in REMS. They coincided with a clustering of sleep spindle rhythms in the forebrain and with heart-rate variations, both of which are correlates of sensory arousability. We addressed the origins of these fluctuations by using closed-loop optogenetic locus coeruleus (LC) activation or inhibition timed to moments of low and high spindle activity during NREMS. We could suppress, lock, or entrain sleep-spindle clustering and heart-rate variations, suggesting that both fore- and hindbrain-projecting LC neurons show coordinated infraslow activity variations in natural NREMS. Noradrenergic modulation of thalamic, but not cortical, circuits was required for sleep-spindle clustering and involved NA release into primary sensory and reticular thalamic nuclei that activated both α1- and ß-adrenergic receptors to cause slowly decaying membrane depolarizations. Noradrenergic signaling by LC constitutes a vigilance-promoting mechanism that renders mammalian NREMS vulnerable to disruption on the close-to-minute timescale through sustaining thalamocortical and autonomic sensory arousability. VIDEO ABSTRACT.


Subject(s)
Sleep , Wakefulness , Animals , Electroencephalography , Mammals , Mice , Norepinephrine , Prosencephalon , Sleep/physiology , Thalamus , Wakefulness/physiology
7.
FEBS Open Bio ; 11(5): 1282-1298, 2021 05.
Article in English | MEDLINE | ID: mdl-33660429

ABSTRACT

Current trends in Higher Education Pedagogies include an ongoing discussion about active learning strategies. Technology-based interventions such as personal response systems (PRS) have gained momentum, especially since the advent of cloud-/web-based solutions. One model that supports the transition from traditional lecturing towards active learning by maintaining a balance between instruction and self-learning is the 'Sandwich Model'. In the present study, we investigated the impact of the Sandwich Model combined with PRS in student learning, engagement and satisfaction by a randomised trial in a large undergraduate biomedical/medical sciences class. A teaching session on epigenetics was delivered either as a traditional lecture (C-group) or as a PRS-including Sandwich-based session (S-group). The major finding of our experiment was the significantly enhanced performance of the S-group over the control, suggesting that the Sandwich Model improves learning gain. We also provide strong evidence that the Sandwich Model enhances student engagement and satisfaction. However, the effect of the Sandwich Model in learning gain and student attitudes was not dependent on PRS incorporation per se and students seemed to favour non-PRS activities over PRS, as evidenced by their feedback. Although further experimental research is needed in order to conclusively compare and contrast PRS and non-PRS activities regarding learning gain, we propose the usage of the Sandwich Model with a variety of in-class learning activities, both PRS and non-PRS-based. Altogether, our work shows that the Sandwich Model is a powerful pedagogical approach that exerts a positive impact on student perceptions for learning and satisfaction and that can support the teaching of challenging biomedical concepts, such as epigenetics.


Subject(s)
Education, Distance/methods , Education/methods , Students, Medical/psychology , Educational Measurement/methods , Epigenomics/education , Female , Humans , Learning/physiology , Male , Personal Satisfaction , Young Adult
8.
Cell Rep ; 31(10): 107747, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32521272

ABSTRACT

As we navigate in space, external landmarks and internal information guide our movement. Circuit and synaptic mechanisms that integrate these cues with head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involve AMPA/NMDA-type glutamate receptors that initiate TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulates PreS/RSC-induced anterior thalamic firing dynamics, broadens the tuning of thalamic HD cells, and leads to preferential use of allo- over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation.


Subject(s)
Head/physiology , Spatial Navigation/physiology , Thalamic Nuclei/physiology , Animals , Mice
9.
Mol Brain ; 11(1): 36, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29970123

ABSTRACT

Major Histocompability Complex I (MHC-I) molecules present cellularly derived peptides to the adaptive immune system. Generally MHC-I is not expressed on healthy post-mitotic neurons in the central nervous system, but it is known to increase upon immune activation such as viral infections and also during neurodegenerative processes. MHC-I expression is known to be regulated by the DNA methyltransferase DNMT1 in non-neuronal cells. Interestingly DNMT1 expression is high in neurons despite these being non-dividing. This suggests a role for DNMT1 in neurons beyond the classical re-methylation of DNA after cell division. We thus investigated whether DNMT1 regulates MHC-I in post-mitotic neurons. For this we used primary cultures of mouse cerebellar granule neurons (CGNs). Our results showed that knockdown of DNMT1 in CGNs caused upregulation of some, but not all subtypes of MHC-I genes. This effect was synergistically enhanced by subsequent IFNγ treatment. Overall MHC-I protein level was not affected by knockdown of DNMT1 in CGNs. Instead our results show that the relative MHC-I expression levels among the different MHC subtypes is regulated by DNMT1 activity. In conclusion, we show that while the mouse H2-D1/L alleles are suppressed in neurons by DNMT1 activity under normal circumstances, the H2-K1 allele is not. This finding is particularly important in two instances. One: in the context of CNS autoimmunity with epitope presentation by specific MHC-I subtypes where this allele specific regulation might become important; and two: in amyotropic lateral sclerosis (ALS) where H2-K but not H2-D protects motor neurons from ALS astrocyte-induced toxicity in a mouse model of ALS.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Gene Expression Regulation , Genes, MHC Class I , Mitosis/genetics , Neurons/cytology , Neurons/metabolism , Animals , Biomarkers/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Interferon-gamma/metabolism , Mice , RNA, Small Interfering/metabolism , Synapses/metabolism
10.
J Neurosci Methods ; 274: 116-124, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27717866

ABSTRACT

BACKGROUND: Efficient and specific knockdown of proteins in post-mitotic cells such as differentiated neurons can be difficult to achieve. Further, special care must be taken to maintain the health of neurons in vitro. We wanted to achieve knockdown in primary cerebellar granule neurons, which can be effectively grown in Neurobasal™ media. NEW METHOD: We tested the efficiency of siRNA from the Accell range from Dharmacon™ when delivered in Neurobasal™ media in contrast to the recommended Accell Delivery media provided by the manufacturer. RESULTS: We observed a more specific knockdown of target in Neurobasal™ media, than in Accell Delivery media when using cerebellar granule neurons. Transfection efficiency and cell viability was comparable between the two media. COMPARISON WITH EXISTING METHODS: Delivery of siRNA in Neurobasal™ media facilitates increased specificity of the knockdown compared to delivery in Accell Delivery media. The off-target effect observed in Accell Delivery media was not a secondary biological response to downregulation of target, but rather a mixture of specific and non-specific off-target effects. CONCLUSIONS: Specific knockdown of target can be achieved in primary cerebellar granule cells using Accell siRNAs in Neurobasal™ media. This method ensures specific knockdown in post-mitotic neurons without the need for biosafety level 2 laboratories, additional reagents, or instruments needed by other transfection.


Subject(s)
Cerebellum/cytology , Culture Media/pharmacology , Down-Regulation/drug effects , Neurons/drug effects , RNA, Small Interfering/metabolism , Animals , Animals, Newborn , Cell Survival , Cells, Cultured , Cyclophilins/genetics , Cyclophilins/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Down-Regulation/genetics , Glial Fibrillary Acidic Protein/metabolism , Mice , Mice, Inbred BALB C , Neuroblastoma/pathology , Neurons/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Tubulin/metabolism , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL
...