Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(23): 7269-7285, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37741938

ABSTRACT

Pseudomonas aeruginosa is an emerging threat for hospitalized and cystic fibrosis patients. Biofilm, a microbial community embedded in extracellular polymeric substance, fortifies bacteria against the immune system. In biofilms, the expression of functional amyloids is linked with highly aggregative, multi-resistant strains, and chronic infections. Serrapeptase (SPT), a protease possessing similar or superior anti-microbial properties with many antibiotics, presents anti-amyloid potential. However, studies on the employment of SPT against Pseudomonas biofilms and Fap amyloid, or the possible mechanisms of action are scarce. Here, SPT inhibited biofilm formation of P. aeruginosa ATCC 27853 on both plastic and glass surfaces, with an IC50 of 11.26 µg/mL and 0.27 µg/mL, respectively. The inhibitory effect of SPT on biofilm was also verified with optical microscopy of crystal violet-stained biofilms and with confocal microscopy. Additionally, SPT caused a dose-dependent decrease of bacterial viability (IC50 of 3.07 µg/mL) as demonstrated by MTT assay. Reduction of bacterial functional amyloids was also demonstrated, employing both fluorescence microscopy with thioflavin T and photometrical determination of Congo-red-positive compounds. Both viability and functional amyloids correlated significantly with biofilm inhibition. Finally, in silico molecular docking studies provided a mechanistic insight into the interaction of SPT with FapC or FapD, proving that both peptides are possible targets of SPT. These results offer new insights into the biofilm formation of P. aeruginosa and potentiate the involvement of SPT in the prevention and eradication of Pseudomonas biofilms. KEY POINTS: • Serrapeptase inhibits biofilm formation of P. aeruginosa on plastic and glass. • Biofilm inhibition correlated with reduced viability and functional amyloid levels. • In silico studies indicated that serrapeptase may target FapC and FapD peptides.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Extracellular Polymeric Substance Matrix/metabolism , Molecular Docking Simulation , Biofilms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Peptide Hydrolases/metabolism , Peptides/metabolism , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests
2.
Appl Microbiol Biotechnol ; 107(4): 1373-1389, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36635396

ABSTRACT

Staphylococcus aureus biofilms are implicated in hospital infections due to elevated antibiotic and host immune system resistance. Molecular components of cell wall including amyloid proteins, peptidoglycans (PGs), and lipoteichoic acid (LTA) are crucial for biofilm formation and tolerance of methicillin-resistant S. aureus (MRSA). Significance of alkaline phosphatases (ALPs) for biofilm formation has been recorded. Serrapeptase (SPT), a protease of Serratia marcescens, possesses antimicrobial properties similar or superior to those of many antibiotics. In the present study, SPT anti-biofilm activity was demonstrated against S. aureus (ATCC 25923, methicillin-susceptible strain, methicillin-susceptible S. aureus (MSSA)) and MRSA (ST80), with IC50 values of 0.67 µg/mL and 7.70 µg/mL, respectively. SPT affected bacterial viability, causing a maximum inhibition of - 46% and - 27%, respectively. Decreased PGs content at [SPT] ≥ 0.5 µg/mL and ≥ 8 µg/mL was verified for MSSA and MRSA, respectively. In MSSA, LTA levels decreased significantly (up to - 40%) at lower SPT doses but increased at the highest dose of 2 µg/mL, a counter to spectacularly increased cellular and secreted LTA levels in MRSA. SPT also reduced amyloids of both strains. Additionally, intracellular ALP activity decreased in both MSSA and MRSA (up to - 85% and - 89%, respectively), while extracellular activity increased up to + 482% in MSSA and + 267% in MRSA. Altered levels of DING proteins, which are involved in phosphate metabolism, in SPT-treated bacteria, were also demonstrated here, implying impaired phosphorus homeostasis. The differential alterations in the studied molecular aspects underline the differences between MSSA and MRSA and offer new insights in the treatment of resistant bacterial biofilms. KEY POINTS: • SPT inhibits biofilm formation in methicillin-resistant and methicillin-susceptible S. aureus. • SPT treatment decreases bacterial viability, ALP activity, and cell wall composition. • SPT-treated bacteria present altered levels of phosphate-related DING proteins.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Methicillin , Anti-Bacterial Agents/pharmacology , Peptide Hydrolases , Staphylococcal Infections/microbiology , Biofilms , Homeostasis , Microbial Sensitivity Tests
3.
J Neuroimmunol ; 361: 577744, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34655990

ABSTRACT

Glial fibrillary acidic protein (GFAP) is the main constituent of the astrocytic cytoskeleton, overexpressed during reactive astrogliosis-a hallmark of Alzheimer's Disease (AD). GFAP and established biomarkers of neurodegeneration, inflammation, and apoptosis have been determined in the saliva of amnestic-single-domain Mild Cognitive Impairment (MCI) (Ν = 20), AD (Ν = 20) patients, and cognitively healthy Controls (Ν = 20). Salivary GFAP levels were found significantly decreased in MCI and AD patients and were proven an excellent biomarker for discriminating Controls from MCI or AD patients. GFAP levels correlate with studied biomarkers and Aß42, IL-1ß, and caspase-8 are its main predictors.


Subject(s)
Alzheimer Disease/diagnosis , Apoptosis , Cognitive Dysfunction/diagnosis , Glial Fibrillary Acidic Protein/analysis , Neuroinflammatory Diseases/diagnosis , Saliva/chemistry , Aged , Aged, 80 and over , Amyloid beta-Peptides/analysis , Area Under Curve , Biomarkers , Caspase 8/analysis , Cross-Sectional Studies , Cyclooxygenase 2/analysis , Female , Humans , Interleukin-1beta/analysis , Male , Neuropsychological Tests , Peptide Fragments/analysis , Pilot Projects , ROC Curve , Tumor Necrosis Factor-alpha/analysis , tau Proteins/analysis
4.
J Neuroimmunol ; 357: 577561, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34091099

ABSTRACT

This study reports elevated levels of bacterial lipopolysaccharides (LPSs) and cyclooxygenases (COX-1/2) in blood serum and cerebrospinal fluid (CSF) of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) patients compared to cognitively healthy individuals, indicating LPSs as promising biomarkers, especially in serum. LPSs, in both fluids, positively correlate with COX-1/2, Αß42 and tau and negatively with mental state. Furthermore, COX-2 is the main determinant of LPSs presence in serum, whereas COX-1 in CSF. These results underline the significance of microbial/ inflammatory involvement in dementia and offer novel perspectives on the roles of LPSs and COX in pathogenesis of AD.


Subject(s)
Alzheimer Disease/metabolism , Bacterial Proteins/metabolism , Cognitive Dysfunction/metabolism , Lipopolysaccharides/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Aged , Aged, 80 and over , Biomarkers/metabolism , Female , Humans , Male , Middle Aged
5.
J Inorg Biochem ; 221: 111402, 2021 08.
Article in English | MEDLINE | ID: mdl-33975249

ABSTRACT

An oxovanadium(IV) - curcumin based complex, viz. [VO(cur)(2,2´-bipy)(H2O)] where cur is curcumin and bipy is bipyridine, previously synthesized, has been studied for interaction with albumin and DNA. Fluorescence emission spectroscopy was used to evaluate the interaction of the complex with bovine serum albumin (BSA) and the BSA-binding constant (Kb) was calculated to be 2.56 x 105 M-1, whereas a single great-affinity binding site was revealed. Moreover, the hemocompatibility test demonstrated that the complex presented low hemolytic fraction (mostly below 1%), in all concentrations tested (0-250 µΜ of complex, 5% DMSO) assuring a safe application in interaction with blood. The binding of the complex to DNA was also investigated using absorption, fluorescence, and viscometry methods indicating a binding through a minor groove mode. From competitive studies with ethidium bromide the apparent binding constant value to DNA was estimated to be 4.82 x 106 M-1. Stern-Volmer quenching phenomenon gave a ΚSV constant [1.92 (± 0.05) x 104 M-1] and kq constant [8.33 (± 0.2) x 1011 M-1s-1]. Molecular docking simulations on the crystal structure of BSA, calf thymus DNA, and DNA gyrase, as well as pharmacophore analysis for BSA target, were also employed to study in silico the ability of [VO(cur)(2,2´-bipy)(H2O)] to bind to these target bio-macromolecules and explain the observed in vitro activity.


Subject(s)
Coordination Complexes/metabolism , Curcumin/metabolism , DNA Gyrase/metabolism , DNA/metabolism , Serum Albumin, Bovine/metabolism , Animals , Binding Sites , Cattle , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Curcumin/analogs & derivatives , Curcumin/toxicity , DNA/chemistry , DNA Gyrase/chemistry , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Hemolysis/drug effects , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine/chemistry , Vanadium/chemistry , Vanadium/toxicity , Viscosity/drug effects
6.
Biometals ; 34(1): 67-85, 2021 02.
Article in English | MEDLINE | ID: mdl-33156436

ABSTRACT

The emergence of resistant bacterial strains mainly due to misuse of antibiotics has seriously affected our ability to treat bacterial illness, and the development of new classes of potent antimicrobial agents is desperately needed. In this study, we report the efficient synthesis of a new pyrazoline-pyridine containing ligand L1 which acts as an NN-donor for the formation of a novel silver (I) complex 2. The free ligand did not show antibacterial activity. High potency was exhibited by the complex against three Gram-negative bacteria, namely Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumanii with the minimum inhibitory concentration (MIC) ranging between 4 and 16 µg/mL (4.2-16.7 µM), and excellent activity against the fungi Candida albicans and Cryptococcus neoformans (MIC ≤ 0.25 µg/mL = 0.26 µM). Moreover, no hemolytic activity within the tested concentration range was observed. In addition to the planktonic growth inhibition, the biofilm formation of both Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa was significantly reduced by the complex at MIC concentrations in a dose-dependent manner for Pseudomonas aeruginosa, whereas a biphasic response was obtained for MRSA showing that the sub-MIC doses enhanced biofilm formation before its reduction at higher concentration. Finally, complex 2 exhibited strong DNA binding with a large drop in DNA viscosity indicating the absence of classical intercalation and suggesting the participation of the silver ion in DNA binding which may be related to its antibacterial activity. Taken together, the current results reveal that the pyrazoline-pyridine silver complexes are of high interest as novel antibacterial agents, justifying further in vitro and in vivo investigation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Coordination Complexes/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Silver/pharmacology , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/drug effects , Pyrazoles/chemistry , Pyridines/chemistry , Silver/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...