Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Cardiovasc Toxicol ; 24(1): 49-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38108959

ABSTRACT

Lead compounds are one of the most common pollutants of the workplace air and the environment. In the occupational setting, the sources of their emission, including in nanoscale form, are various technological processes associated with lead smelting and handling of non-ferrous metals and their alloys, the production of copper and batteries. Both lead poisoning and lead exposure without obvious signs of poisoning have a detrimental effect on the cardiovascular system. The purpose of this research was to investigate the mechanisms of the cardiotoxic effect of lead oxide nanoparticles (PbO NPs). The toxicological experiment involved male albino rats subchronically exposed to PbO NPs (49.6 ± 16.0 nm in size) instilled intraperitoneally in a suspension. We then assessed post-exposure hematological and biochemical parameters of blood and urine, histological and ultrastructural changes in cardiomyocytes, and non-invasively recorded electrocardiograms and blood pressure parameters in the rodents. Myocardial contractility was studied on isolated preparations of cardiac muscles. We established that PbO NPs induced oxidative stress and damage to the ultrastructure of cardiomyocytes, and decreased efficiency of the contractile function of the myocardium and blood pressure parameters. We also revealed such specific changes in the organism of the exposed rats as anemia, hypoxia, and hypocalcemia.


Subject(s)
Lead , Nanoparticles , Rats , Male , Animals , Nanoparticles/toxicity , Oxides/toxicity , Oxides/chemistry , Oxidative Stress
2.
Toxics ; 11(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37755801

ABSTRACT

Chronic diseases of the urogenital tract, such as bladder cancer, prostate cancer, reproductive disorders, and nephropathies, can develop under the effects of chemical hazards in the working environment. In this respect, nanosized particles generated as by-products in many industrial processes seem to be particularly dangerous to organs such as the testes and the kidneys. Nephrotoxicity of element oxide particles has been studied in animal experiments with repeated intraperitoneal injections of Al2O3, TiO2, SiO2, PbO, CdO, CuO, and SeO nanoparticles (NPs) in total doses ranging from 4.5 to 45 mg/kg body weight of rats. NPs were synthesized by laser ablation. After cessation of exposure, we measured kidney weight and analyzed selected biochemical parameters in blood and urine, characterizing the state of the excretory system. We also examined histological sections of kidneys and estimated proportions of different cells in imprint smears of this organ. All element oxide NPs under investigation demonstrated a nephrotoxic effect following subchronic exposure. Following the exposure to SeO and SiO2 NPs, we observed a decrease in serum creatinine and urea, respectively. Exposure to Al2O3 NPs caused an increase in urinary creatinine and urea, while changes in total protein were controversial, as it increased under the effect of Al2O3 NPs and was reduced after exposure to CuO NPs. Histomorphological changes in kidneys are associated with desquamation of the epithelium (following the exposure to all NPs except those of Al2O3 and SiO2) and loss of the brush border (following the exposure to all NPs, except those of Al2O3, TiO2, and SiO2). The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. Compared to the controls, we observed statistically significant alterations in 42.1% (8 of 19) of parameters following the exposure to PbO, CuO, and SeO NPs in 21.1% (4 of 19)-following that, to CdO and Al2O3 NPs-and in 15.8% (3 of 19) and 10.5% (2 of 19) of indicators, following the exposure to TiO2 and SiO2 nanoparticles, respectively. Histomorphological changes in kidneys are associated with desquamation of epithelium and loss of the brush border. The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. The severity of cyto- and histological structural changes in kidneys depends on the chemical nature of NPs. These alterations are not always consistent with biochemical ones, thus impeding early clinical diagnosis of renal damage. Unambiguous ranking of the NPs examined by the degree of their nephrotoxicity is difficult. Additional studies are necessary to establish key indicators of the nephrotoxic effect, which can facilitate early diagnosis of occupational and nonoccupational nephropathies.

3.
Food Chem Toxicol ; 169: 113444, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36179994

ABSTRACT

A moderate degree of lead intoxication was observed in male rats after repeated intraperitoneal injections with two doses of lead acetate three times a week during 5 (12.5 mg of Pb per kg body mass) and 6 (6.01 mg of Pb per kg body mass) weeks. Using an in vitro motility assay, we investigated the impact of this intoxication on the characteristics of actin-myosin interaction and its regulation in the atria, right, and left ventricles. Both lead doses exposure decreased the maximum sliding velocity of reconstituted thin filaments over myosin and fraction of motile filaments in all heart chambers, caused the myosin isoforms shift towards slower ß-myosin heavy chains in ventricles and decreased regulatory light chain phosphorylation in atria. No statistically significant difference was found in force and calcium regulation of actin-myosin interaction. A dose-dependent effect of lead on myosin functional characteristics was found in all heart chambers, but the degree of this effect varied depending on the heart chamber.


Subject(s)
Actins , Environmental Exposure , Lead , Myocardium , Myosin Heavy Chains , Organometallic Compounds , Animals , Male , Rats , Actins/metabolism , Calcium , Lead/toxicity , Myocardium/metabolism , Myosin Heavy Chains/metabolism , Organometallic Compounds/toxicity
4.
Int J Mol Sci ; 23(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35457173

ABSTRACT

Our studies of exposure to binary mixtures of nanoparticles (TiO2 + SiO2; TiO2 + Al2O3 and SiO2 + Al2O3) based on mathematical modelling show that their combined subchronic toxicity can either be of an additive type or deviate from it depending on the outcome, dose ratio, and levels of effect. To characterize the type of toxicity of ternary mixtures of nanoparticles, we successfully tested a previously developed approach for assessing the combined toxicity of metal ions. In this approach, the effects are classified by a null, positive, or negative change in the toxicity of binary nanoparticle mixtures when modeled against the toxicity of the third agent added.


Subject(s)
Nanoparticles , Silicon Dioxide , Ions , Models, Theoretical , Nanoparticles/toxicity , Silicon Dioxide/toxicity
5.
Int J Mol Sci ; 23(8)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35457235

ABSTRACT

Exposure to lead is associated with an increased risk of cardiovascular diseases. Outbred white male rats were injected with lead acetate intraperitoneally three times a week and/or were forced to run at a speed of 25 m/min for 10 min 5 days a week. We performed noninvasive recording of arterial pressure, electrocardiogram and breathing parameters, and assessed some biochemical characteristics. Electrophoresis in polyacrylamide gel was used to determine the ratio of myosin heavy chains. An in vitro motility assay was employed to measure the sliding velocity of regulated thin filaments on myosin. Isolated multicellular preparations of the right ventricle myocardium were used to study contractility in isometric and physiological modes of contraction. Exercise under lead intoxication normalized the level of calcium and activity of the angiotensin-converting enzyme in the blood serum, normalized the isoelectric line voltage and T-wave amplitude on the electrocardiogram, increased the level of creatine kinase-MB and reduced the inspiratory rate. Additionally, the maximum sliding velocity and the myosin heavy chain ratio were partly normalized. The effect of exercise under lead intoxication on myocardial contractility was found to be variable. In toto, muscular loading was found to attenuate the effects of lead intoxication, as judged by the indicators of the cardiovascular system.


Subject(s)
Lead , Myocardium , Animals , Cardiotoxicity , Lead/toxicity , Male , Myocardial Contraction , Myosin Heavy Chains , Myosins , Rats
6.
Int J Mol Sci ; 22(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801669

ABSTRACT

Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO-NP and PbO-NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling ß-MHC. The type of CdO-NP + PbO-NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb-NP and CdO-NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.


Subject(s)
Cadmium Compounds/toxicity , Heart/drug effects , Lead/toxicity , Metal Nanoparticles/toxicity , Nanotechnology/methods , Oxides/toxicity , Papillary Muscles/drug effects , Animals , Cardiotoxicity , DNA Fragmentation , Injections, Intraperitoneal , Male , Myocardium/metabolism , Myocardium/pathology , Myosin Heavy Chains , Myosins/chemistry , Protein Isoforms , Rats , Toxicity Tests, Subchronic
7.
Dose Response ; 19(1): 1559325820982163, 2021.
Article in English | MEDLINE | ID: mdl-33628148

ABSTRACT

In vitro toxicological experiments were performed on an endothelial cell line exposed to different doses of spherical nanoparticles of cadmium and/or of lead sulfides with mean diameter 37 ± 5 nm and 24 ± 4 nm, respectively. Toxic effects were estimated by Luminescent Cell Viability Assay, endothelin-1 concentration and cell size determination. Some dose-response relationships were typically monotonic (well approximated with hyperbolic function) while others were bi- or even 3-phasic and could be described within the expanded hormesis paradigm. The combined toxicity type variated depending on the effect it was assessed by.

8.
Int J Mol Sci ; 22(1)2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33401533

ABSTRACT

Rats were exposed to nickel oxide nano-aerosol at a concentration of 2.4 ± 0.4 µg/m3 in a "nose only" inhalation setup for 4 h at a time, 5 times a week, during an overall period of 2 weeks to 6 months. Based on the majority of the effects assessed, this kind of exposure may be considered as close to LOAEL (lowest observed adverse effect level), or even to NOAEL (no observed adverse effect level). At the same time, the experiment revealed genotoxic and allergic effects as early as in the first weeks of exposure, suggesting that these effects may have no threshold at all.


Subject(s)
Inhalation Exposure/adverse effects , Lung/pathology , Nanoparticles/toxicity , Nickel/toxicity , Risk Assessment/methods , Animals , Female , Lung/drug effects , No-Observed-Adverse-Effect Level , Rats
9.
Toxicology ; 447: 152629, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33189796

ABSTRACT

The authors propose to consider as hormesis phenomenon not only a realization of the Arndt-Schulze rule but any non-monotonic dose-response relationship for a certain outcome that is characterized by changing direction of a response between adjacent ranges of doses of an initiator of this response, the number of such ranges being two or more. This approach is illustrated with results of several in vitro experiments on different established cell lines exposed to CdS or PbS nanoparticles.


Subject(s)
Cadmium Compounds/toxicity , Hormesis/physiology , Lead/toxicity , Models, Theoretical , Myocytes, Cardiac/physiology , Nanoparticles/toxicity , Sulfides/toxicity , Animals , Cadmium Compounds/administration & dosage , Dose-Response Relationship, Drug , Hormesis/drug effects , Humans , Lead/administration & dosage , Myocytes, Cardiac/drug effects , Nanoparticles/administration & dosage , Sulfides/administration & dosage
10.
Nanotoxicology ; 15(2): 205-222, 2021 03.
Article in English | MEDLINE | ID: mdl-33186499

ABSTRACT

Moderate subchronic intoxication was induced in rats by repeated intraperitoneal injections of PbO (49.6 ± 16.0 nm) and/or CdO (57.0 ± 13.0 nm) nanoparticles (NP) three times a week during 6 weeks. In particular, there was a reduction in arterial blood pressure and in blood concentrations of a number of factors controlling vasoconstriction and vasodilation, particularly of endothelin 1 (ET-1). This toxic effect was attenuated with a bioprotective complex administered in the background. The study confirmed as well that the combined binary action typology varies depending on which effect it is estimated by.


Subject(s)
Cadmium/toxicity , Cardiovascular System/drug effects , Lead/toxicity , Nanoparticles/toxicity , Animals , Dose-Response Relationship, Drug , Drug Synergism , Injections, Intraperitoneal , Male , Organ Specificity , Rats , Toxicity Tests, Subchronic
11.
Toxicol Rep ; 7: 986-994, 2020.
Article in English | MEDLINE | ID: mdl-32874921

ABSTRACT

Rats were exposed 3 times a week during 6 weeks to repeated intraperitoneal injections of lead acetate solution in water (Pb) and/or benzo(а)pyrene solution in petrolatum oil (B(а)P) in various dose ratios. Towards the end of the period, the animals developed a moderate subchronic intoxication having some features characteristic of lead effects. The type of combined toxicity estimated with the help of isoboles constructed by the Response Surface Methodology was found to be varied depending on a particular effect, its level, and dose ratio. However, Pb and B(a)P in combination often displayed an additive or even superadditive action. In the group exposed to this combination compared with the group of rats exposed to B(a)P alone, its concentration in the organism was increased while the concentration of some B(a)P oxidative metabolism products was reduced. Such inhibition of B(a)P biotransformation, assumingly associated with impaired heme and, thus, cytochrome P450 synthesis induced by lead intoxication, can serve as an explanation for certain enhancement of the genotoxic effect of B(a)P. This effect was not present in the same combined intoxication if a complex of antitoxic bioprotectors was being administered in the background.

12.
Food Chem Toxicol ; 144: 111641, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32758638

ABSTRACT

This investigation continues our study of the effects of Pb-Cd poisoning on the heart, extending the enquiry from isometric to auxotonic contractions, thereby examining the effect on the ability of myocardial tissues to perform mechanical work. Different shifts were revealed in myocardial force-velocity relations following subchronic exposure of rats to lead acetate and cadmium chloride acting separately, in combination, or in combination with a bioprotective complex (BPC). The experiments were conducted on isolated preparations of trabecules and papillary muscles of the right ventricle in physiological loading conditions and on isolated heart muscle contractile proteins examined by the in vitro motility assay. The results of the latter correlate with the shifts in the ratio of cardiac myosin isoforms. The amount of work performed by the myocardium was calculated on the basis of the tension-shortening loop area and was found to be similar in the preparations from all experimental groups. This fact presumably reflects adaptive capacity of the myocardial function even when contractility is damaged due to the metallic intoxication of a moderate severity. Some characteristics of rat myocardium altered by the impact of lead-cadmium intoxication became fully or partly normalized if intoxication developed against background administration of a bioprotective complex (BPC). Together with previously reported results obtained in the isometric mode of contractility, all these results strengthen the scientific foundations of risk assessment and risk management projects in the occupational and environmental conditions characterized by human exposure to lead and/or cadmium.


Subject(s)
Cadmium/toxicity , Heart/drug effects , Lead/toxicity , Animals , Cadmium/administration & dosage , In Vitro Techniques , Lead/administration & dosage , Male , Rats , Toxicity Tests, Subchronic
13.
Nanotoxicology ; 14(6): 788-806, 2020 08.
Article in English | MEDLINE | ID: mdl-32396411

ABSTRACT

Over the past few years, the Ekaterinburg (Russia) interdisciplinary nanotoxicological research team has carried out a series of investigations using different in vivo and in vitro experimental models in order to elucidate the cytotoxicity and organ-systemic and organism-level toxicity of lead-containing nanoparticles (NP) acting separately or in combinations with some other metallic NPs. The authors claim that their many-sided experience in this field is unique and that some of their important results have been obtained for the first time. This paper is an overview of the team's previous publications in different journals. It is suggested to be used as a compact scientific base for assessing health risks associated not only with the production and usage of engineered lead-containing NPs but also with their inevitable by-production as toxic air pollutants in the metallurgy of lead, copper or their alloys and in soldering operations.


Subject(s)
Copper/toxicity , Lead/toxicity , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Nanotechnology , Animals , Cell Line , Fibroblasts/drug effects , Humans , Materials Testing , Rats , Russia , Toxicity Tests
14.
Dose Response ; 18(1): 1559325820914180, 2020.
Article in English | MEDLINE | ID: mdl-32231470

ABSTRACT

Spherical nanoparticles (NPs) of cadmium and lead sulfides (diameter 37 ± 5 and 24 ± 4 nm, respectively) have been found to be cytotoxic for HL-1 cardiomyocytes as evidenced by decrease in adenosine triphosphate-dependent luminescence. Cadmium sulfide (CdS)-NPs were discovered to produce a much greater cytotoxic impact than lead sulphide (PbS)-NP. Given the same dose range, CdS-NP reduced the number of calcium spikes. A similar effect was observed for small doses of PbS-NP. In addition to cell hypertrophy under the impact of certain doses of CdS-NP and PbS-NP, doses causing cardiomyocyte size reduction were identified. For these 3 outcomes, we obtained both monotonic "dose-response" functions (well approximated by the hyperbolic function) and different variants of non-monotonic ones for which we found adequate mathematical expressions by modifying certain models of hormesis available in the literature. Data analysis using a response surface linear model with a cross-term provided new support to the previously established postulate that a diversity of types of joint action characteristic of one and the same pair of damaging agents is one of the important assertions of the general theory of combined toxicity.

15.
Toxicol Rep ; 7: 433-442, 2020.
Article in English | MEDLINE | ID: mdl-32181144

ABSTRACT

Subchronic intoxications induced in male rats by repeated intraperitoneal injections of lead acetate and cadmium chloride, administered either alone or in combination, are shown to affect the biochemical, cytological and morphometric parameters of blood, liver, heart and kidneys. The single twitch parameters of myocardial trabecular and papillary muscle preparations were measured in the isometric regime to identify changes in the heterometric (length-force) and chronoinotropic (frequency-force) contractility regulation systems. Differences in the responses of these systems in trabecules and papillary muscles to the above intoxications are shown. A number of myocardium mechanical characteristics changing in rats under the effect of a combined lead-cadmium intoxication and increased proportion of α-myosin heavy chains were observed to normalize fully or partially if such intoxication was induced against background administration of a proposed bioprotective complex. Based on the experimental results and literature data, some assumptions are suggested concerning the mechanisms of the cardiotoxic effects produced by lead and cadmium.

16.
Int J Mol Sci ; 21(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973040

ABSTRACT

Outbred female rats were exposed to inhalation of lead oxide nanoparticle aerosol produced right then and there at a concentration of 1.30 ± 0.10 mg/m3 during 5 days for 4 h a day in a nose-only setup. A control group of rats were sham-exposed in parallel under similar conditions. Even this short-time exposure of a relatively low level was associated with nanoparticles retention demonstrable by transmission electron microscopy in the lungs and the olfactory brain. Some impairments were found in the organism's status in the exposed group, some of which might be considered lead-specific toxicological outcomes (in particular, increase in reticulocytes proportion, in δ-aminolevulinic acid (δ-ALA) urine excretion, and the arterial hypertension's development).


Subject(s)
Inhalation Exposure , Lead/toxicity , Nanoparticles/toxicity , Oxides/toxicity , Aerosols , Aminolevulinic Acid/urine , Animals , Bronchoalveolar Lavage Fluid/chemistry , Female , Lead/administration & dosage , Lung/pathology , Microscopy, Electron, Transmission , Nanoparticles/administration & dosage , Oxides/administration & dosage , Particle Size , Pulmonary Arterial Hypertension , Rats
17.
Food Chem Toxicol ; 136: 110971, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31751644

ABSTRACT

Outbred male rats were repeatedly injected intraperitoneally two-level sub-lethal doses of lead acetate and/or cadmium chloride solutions 3 times a week during 6 weeks. The animals developed explicit, even if moderate, subchronic intoxication characterized by a large number of indices, both common to both metals (including increased DNA fragmentation coefficient) and lead-specific. Special attention was paid to hemodynamic and electrocardiographic effects. The combined action of lead and cadmium was modeled with the help of the Response Surface Methodology to obtain additional support for the previously substantiated postulates of combined toxicity's typological ambiguity. This is dependent on which particular effect comes under consideration, on its level, and on the acting dose ratio. For one and the same toxic combination, the type of combined toxic action can vary from synergistic to contra-directional. In particular, the actions of lead and cadmium on blood pressure were found to be opposite in direction. Furthermore, it is shown once again that the systemic toxic effects of a metal combination, its in vivo genotoxicity included, can be more or less attenuated by background administration of a theoretically justified composition of biologically active agents.


Subject(s)
Cadmium/toxicity , Lead/toxicity , Animals , Animals, Outbred Strains , Cadmium/blood , Cadmium Chloride/administration & dosage , Cadmium Chloride/toxicity , DNA Fragmentation/drug effects , Drug Synergism , Echocardiography/drug effects , Heart/drug effects , Hemodynamics/drug effects , Injections, Intraperitoneal , Kidney/drug effects , Kidney/pathology , Lead/blood , Male , Mutagens/toxicity , Myocardium/pathology , Organometallic Compounds/administration & dosage , Organometallic Compounds/toxicity , Rats , Toxicity Tests, Subchronic
18.
Int J Mol Sci ; 20(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974874

ABSTRACT

Rats were exposed to nickel oxide nanoparticles (NiO-NP) inhalation at 0.23 ± 0.01 mg/m³ for 4 h a day 5 times a week for up to 10 months. The rat organism responded to this impact with changes in cytological and some biochemical characteristics of the bronchoalveolar lavage fluid along with a paradoxically little pronounced pulmonary pathology associated with a rather low chronic retention of nanoparticles in the lungs. There were various manifestations of systemic toxicity, including damage to the liver and kidneys; a likely allergic syndrome as indicated by some cytological signs; transient stimulation of erythropoiesis; and penetration of nickel into the brain from the nasal mucous membrane along the olfactory pathway. Against a picture of mild to moderate chronic toxicity of nickel, its in vivo genotoxic effect assessed by the degree of DNA fragmentation in nucleated blood cells (the RAPD test) was pronounced, tending to increasing with the length of the exposure period. When rats were given orally, in parallel with the toxic exposure, a set of innocuous substances with differing mechanisms of expected bioprotective action, the genotoxic effect of NiO-NPs was found to be substantially attenuated.


Subject(s)
Inhalation Exposure/adverse effects , Nanoparticles/toxicity , Nickel/toxicity , Animals , Bronchoalveolar Lavage Fluid , Liver/pathology , Liver/ultrastructure , Lung/metabolism , Lung/ultrastructure , Male , Organ Specificity , Rats , Time Factors
19.
Toxicol Rep ; 6: 279-287, 2019.
Article in English | MEDLINE | ID: mdl-30984565

ABSTRACT

The paper retraces the development of a mechanistic multicompartmental system model describing particle retention in lungs under chronic inhalation exposures. This model was first developed and experimentally tested for various conditions of exposure to polydisperse dusts of SiO2 or TiO2. Later on it was successfully used as a basis for analyzing patterns in the retention of nanoparticles having different chemical compositions (Fe2O3, SiO2, NiO). This is the first publication presenting the outcomes of modeling lung retention of nickel oxide nano-aerosols under chronic inhalation exposure. The most significant adaptation of the above-mentioned model to the conditions of exposure to metal-oxide nanoparticles is associated with the need to describe mathematically not only the physiological mechanisms of their elimination but also their solubilization "in vivo" bearing in mind that the relative contribution of the latter may be different for nanoparticles of different nature and predominant in some cases. Using nickel oxide as an example, it is suggested as well that damage to the physiological pulmonary clearance mechanisms by particularly toxic nanoparticles may result in lung toxicokinetics becoming nonlinear.

20.
Food Chem Toxicol ; 125: 233-241, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30634013

ABSTRACT

A moderate subchronic lead intoxication was observed in male rats after repeated intraperitoneal injections of lead acetate. Right ventricular trabeculae and papillary muscles were isolated for in vitro studying of the contraction-relaxation cycle under isotonic and physiological loading. The contractile function of the myocardium was also assessed by measuring the velocity of thin filament movement over myosin. Lead intoxication led in papillary muscles to a decrease in the maximal rate of isotonic shortening for all afterloads and a decrease in the thin filament sliding velocity. Papillary muscles from lead-exposed rats displayed marked changes in most of the main characteristics of afterload contraction-relaxation cycles, but in trabeculae these changes were less pronounced. The reported changes were attenuated to some extent in rats treated with a Ca-containing bioprotector. The amount of work produced by both types of heart muscle preparations was not changed by lead. Only in papillary muscles the load-dependent relaxation index was significantly increased in the lead-treated groups. Thus subchronic lead intoxication affects the peak rate of force development and relaxation properties of cardiac muscle contracting in isotonic/physiological regimes rather than the total amount of mechanical work, which may reflect adaptive changes in the myocardial function under decreased contractility.


Subject(s)
Heart Ventricles/metabolism , Myocardial Contraction/drug effects , Organometallic Compounds/toxicity , Papillary Muscles/metabolism , Administration, Oral , Animals , Calcium/administration & dosage , Calcium/pharmacology , Injections, Intraperitoneal , Male , Organometallic Compounds/administration & dosage , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...