Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381130

ABSTRACT

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.


Subject(s)
Membrane Transport Proteins , Sodium Chloride , Ion Transport , Cations , Sugars
2.
Chem Sci ; 14(45): 13014-13024, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38023530

ABSTRACT

Membrane proteins play essential roles in a number of biological processes, and their structures are important in elucidating such processes at the molecular level and also for rational drug design and development. Membrane protein structure determination is notoriously challenging compared to that of soluble proteins, due largely to the inherent instability of their structures in non-lipid environments. Micelles formed by conventional detergents have been widely used for membrane protein manipulation, but they are suboptimal for long-term stability of membrane proteins, making downstream characterization difficult. Hence, there is an unmet need for the development of new amphipathic agents with enhanced efficacy for membrane protein stabilization. In this study, we designed and synthesized a set of glucoside amphiphiles with a melamine core, denoted melamine-cored glucosides (MGs). When evaluated with four membrane proteins (two transporters and two G protein-coupled receptors), MG-C11 conferred notably enhanced stability compared to the commonly used detergents, DDM and LMNG. These promising findings are mainly attributed to a unique feature of the MGs, i.e., the ability to form dynamic water-mediated hydrogen-bond networks between detergent molecules, as supported by molecular dynamics simulations. Thus, MG-C11 is the first example of a non-peptide amphiphile capable of forming intermolecular hydrogen bonds within a protein-detergent complex environment. Detergent micelles formed via a hydrogen-bond network could represent the next generation of highly effective membrane-mimetic systems useful for membrane protein structural studies.

3.
bioRxiv ; 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37790566

ABSTRACT

While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of the Na+-coupled major facilitator superfamily transporters. With a conformational nanobody (Nb), we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. Collectively with the available outward-facing sugar-bound structures, both the outer and inner barriers were localized. The N- and C-terminal residues of the inner barrier contribute to the sugar selectivity pocket. When the inner barrier is broken as shown in the inward-open conformation, the sugar selectivity pocket is also broken. The binding assays by isothermal titration calorimetry revealed that this inward-facing conformation trapped by the conformation-selective Nb exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for the substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is also supported by molecular dynamics simulations. Furthermore, the use of this Nb in combination with the hydron/deuterium exchange mass spectrometry allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.

4.
J Biol Chem ; 299(8): 104967, 2023 08.
Article in English | MEDLINE | ID: mdl-37380079

ABSTRACT

Salmonella enterica serovar Typhimurium melibiose permease (MelBSt) is a prototype of the Na+-coupled major facilitator superfamily transporters, which are important for the cellular uptake of molecules including sugars and small drugs. Although the symport mechanisms have been well-studied, mechanisms of substrate binding and translocation remain enigmatic. We have previously determined the sugar-binding site of outward-facing MelBSt by crystallography. To obtain other key kinetic states, here we raised camelid single-domain nanobodies (Nbs) and carried out a screening against the WT MelBSt under 4 ligand conditions. We applied an in vivo cAMP-dependent two-hybrid assay to detect interactions of Nbs with MelBSt and melibiose transport assays to determine the effects on MelBSt functions. We found that all selected Nbs showed partial to complete inhibitions of MelBSt transport activities, confirming their intracellular interactions. A group of Nbs (714, 725, and 733) was purified, and isothermal titration calorimetry measurements showed that their binding affinities were significantly inhibited by the substrate melibiose. When titrating melibiose to the MelBSt/Nb complexes, Nb also inhibited the sugar-binding. However, the Nb733/MelBSt complex retained binding to the coupling cation Na+ and also to the regulatory enzyme EIIAGlc of the glucose-specific phosphoenolpyruvate/sugar phosphotransferase system. Further, EIIAGlc/MelBSt complex also retained binding to Nb733 and formed a stable supercomplex. All data indicated that MelBSt trapped by Nbs retained its physiological functions and the trapped conformation is similar to that bound by the physiological regulator EIIAGlc. Therefore, these conformational Nbs can be useful tools for further structural, functional, and conformational analyses.


Subject(s)
Single-Domain Antibodies , Symporters , Single-Domain Antibodies/metabolism , Melibiose/metabolism , Symporters/metabolism , Ion Transport , Sodium/metabolism
5.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373388

ABSTRACT

d-amino acids have recently been found to be present in the extracellular milieu at millimolar levels and are therefore assumed to play a physiological function. However, the pathway (or potential pathways) by which these d-amino acids are secreted remains unknown. Recently, Escherichia coli has been found to possess one or more energy-dependent d-alanine export systems. To gain insight into these systems, we developed a novel screening system in which cells expressing a putative d-alanine exporter could support the growth of d-alanine auxotrophs in the presence of l-alanyl-l-alanine. In the initial screening, five d-alanine exporter candidates, AlaE, YmcD, YciC, YraM, and YidH, were identified. Transport assays of radiolabeled d-alanine in cells expressing these candidates indicated that YciC and AlaE resulted in lower intracellular levels of d-alanine. Further detailed transport assays of AlaE in intact cells showed that it exports d-alanine in an expression-dependent manner. In addition, the growth constraints on cells in the presence of 90 mM d-alanine were mitigated by the overexpression of AlaE, implying that AlaE could export free d-alanine in addition to l-alanine under conditions in which intracellular d/l-alanine levels are raised. This study also shows, for the first time, that YciC could function as a d-alanine exporter in intact cells.


Subject(s)
Amino Acid Transport Systems, Neutral , Escherichia coli Proteins , Escherichia coli , Alanine/metabolism , Escherichia coli Proteins/metabolism , Amino Acids/metabolism , Biological Transport , Amino Acid Transport Systems, Neutral/metabolism
6.
J Gen Appl Microbiol ; 69(3): 142-149, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-36567121

ABSTRACT

In the fermentative production of compounds by using microorganisms, control of the transporter activity responsible for substrate uptake and product efflux, in addition to intracellular metabolic modification, is important from a productivity perspective. However, there has been little progress in analyses of the functions of microbial membrane transporters, and because of the difficulty in finding transporters that transport target compounds, only a few transporters have been put to practical use. Here, we constructed a Corynebacterium glutamicum-derived transporter expression library (CgTP-Express library) with the fusion partner gene mstX and used a peptide-feeding method with the dipeptide L-Ala-L-Ala to search for alanine exporters in the library. Among 39 genes in the library, five candidate alanine exporters (NCgl2533, NCgl2683, NCgl0986, NCgl0453, and NCgl0929) were found; expression of NCgl2533 increased the alanine concentration in cell culture. The CgTP-Express library was thus effective for finding a new transporter candidate.


Subject(s)
Corynebacterium glutamicum , Membrane Transport Proteins , Fermentation , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Alanine/genetics , Alanine/metabolism , Biological Transport , Metabolic Engineering/methods
7.
Chem Sci ; 13(19): 5750-5759, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35694361

ABSTRACT

Detergents are extensively used for membrane protein manipulation. Membrane proteins solubilized in conventional detergents are prone to denaturation and aggregation, rendering downstream characterization of these bio-macromolecules difficult. Although many amphiphiles have been developed to overcome the limited efficacy of conventional detergents for protein stabilization, only a handful of novel detergents have so far proved useful for membrane protein structural studies. Here, we introduce 1,3-acetonedicarboxylate-derived amphiphiles (ACAs) containing three glucose units and two alkyl chains as head and tail groups, respectively. The ACAs incorporate two different patterns of alkyl chain attachment to the core detergent unit, generating two sets of amphiphiles: ACA-As (asymmetrically alkylated) and ACA-Ss (symmetrically alkylated). The difference in the attachment pattern of the detergent alkyl chains resulted in minor variation in detergent properties such as micelle size, critical micelle concentration, and detergent behaviors toward membrane protein extraction and stabilization. In contrast, the impact of the detergent alkyl chain length on protein stability was marked. The two C11 variants (ACA-AC11 and ACA-SC11) were most effective at stabilizing the tested membrane proteins. The current study not only introduces new glucosides as tools for membrane protein study, but also provides detergent structure-property relationships important for future design of novel amphiphiles.

8.
J Mol Biol ; 434(12): 167598, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35461877

ABSTRACT

Cation selectivity and coupling are important attributes of cation-coupled symporters. Salmonella typhimurium melibiose permease (MelBSt) catalyzes the co-transport of galactosides with cations (H+, Li+, or Na+). 3-D crystal structures of MelBSt have revealed the molecular recognition for sugar substrates, but the cation binding and coupling mechanisms have not been defined to atomic levels. In its human homolog MFSD2A, a lethal mutation was mapped at its Na+-binding pocket; however, none of the structures in this subfamily resolved its cation binding. In this study, molecular dynamics simulations reveal the binding interactions of Na+ and Li+ with MelBSt. Interestingly, Thr121, the lethal mutation position in MFSD2A, forms stable interaction with Na+ but is at a distance from Li+. Most mutations among 11 single-site Thr121 mutants of MelBSt exhibited little effects on the galactoside binding, but largely altered the cation selectivity with severe inhibitions on Na+ binding. Few mutants (Pro and Ala) completely lost the Na+ binding and Na+-coupled transport, but their Li+ or H+ modes of activity were largely retained. It can be concluded that Thr121 is necessary for Na+ binding, but not required for the binding of H+ or Li+, so a subset of the Na+-binding pocket is enough for Li+ binding. In addition, the protein stability for some mutants can be only retained in the presence of Li+, but not by Na+ due to the lack of affinity. This finding, together with other identified thermostable mutants, supports that the charge balance of the cation-binding site plays an important role in MelBSt protein stability.


Subject(s)
Bacterial Proteins , Salmonella typhimurium , Symporters , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cations/metabolism , Humans , Lithium/metabolism , Melibiose/metabolism , Salmonella typhimurium/enzymology , Salmonella typhimurium/genetics , Sodium/metabolism , Symporters/chemistry , Symporters/genetics , Symporters/metabolism
9.
Chemistry ; 28(21): e202200116, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35238091

ABSTRACT

Membrane proteins are of biological and pharmaceutical significance. However, their structural study is extremely challenging mainly due to the fact that only a small number of chemical tools are suitable for stabilizing membrane proteins in solution. Detergents are widely used in membrane protein study, but conventional detergents are generally poor at stabilizing challenging membrane proteins such as G protein-coupled receptors and protein complexes. In the current study, we prepared tandem triazine-based maltosides (TZMs) with two amphiphilic triazine units connected by different diamine linkers, hydrazine (TZM-Hs) and 1,2-ethylenediamine (TZM-Es). These TZMs were consistently superior to a gold standard detergent (DDM) in terms of stabilizing a few membrane proteins. In addition, the TZM-Es containing a long linker showed more general protein stabilization efficacy with multiple membrane proteins than the TZM-Hs containing a short linker. This result indicates that introduction of the flexible1,2-ethylenediamine linker between two rigid triazine rings enables the TZM-Es to fold into favourable conformations in order to promote membrane protein stability. The novel concept of detergent foldability introduced in the current study has potential in rational detergent design and membrane protein applications.


Subject(s)
Detergents , Membrane Proteins , Detergents/chemistry , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/chemistry , Protein Stability , Triazines
10.
Chembiochem ; 23(7): e202200027, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35129249

ABSTRACT

Integral membrane proteins pose considerable challenges to high resolution structural analysis. Maintaining membrane proteins in their native state during protein isolation is essential for structural study of these bio-macromolecules. Detergents are the most commonly used amphiphilic compounds for stabilizing membrane proteins in solution outside a lipid bilayer. We previously introduced a glyco-diosgenin (GDN) detergent that was shown to be highly effective at stabilizing a wide range of membrane proteins. This steroidal detergent has additionally gained attention due to its compatibility with membrane protein structure study via cryo-EM. However, synthetic inconvenience limits widespread use of GDN in membrane protein study. To improve its synthetic accessibility and to further enhance detergent efficacy for protein stabilization, we designed a new class of glyco-steroid-based detergents using three steroid units: cholestanol, cholesterol and diosgenin. These new detergents were efficiently prepared and showed marked efficacy for protein stabilization in evaluation with a few model membrane proteins including two G protein-coupled receptors. Some new agents were not only superior to a gold standard detergent, DDM (n-dodecyl-ß-d-maltoside), but were also more effective than the original GDN at preserving protein integrity long term. These agents represent valuable alternatives to GDN, and are likely to facilitate structural determination of challenging membrane proteins.


Subject(s)
Detergents , Membrane Proteins , Detergents/chemistry , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/chemistry , Protein Stability , Steroids
11.
J Biol Chem ; 297(3): 101090, 2021 09.
Article in English | MEDLINE | ID: mdl-34416232

ABSTRACT

The melibiose permease of Salmonella typhimurium (MelBSt) catalyzes the stoichiometric symport of galactopyranoside with a cation (H+, Li+, or Na+) and is a prototype for Na+-coupled major facilitator superfamily (MFS) transporters presenting from bacteria to mammals. X-ray crystal structures of MelBSt have revealed the molecular recognition mechanism for sugar binding; however, understanding of the cation site and symport mechanism is still vague. To further investigate the transport mechanism and conformational dynamics of MelBSt, we generated a complete single-Cys library containing 476 unique mutants by placing a Cys at each position on a functional Cys-less background. Surprisingly, 105 mutants (22%) exhibit poor transport activities (<15% of Cys-less transport), although the expression levels of most mutants were comparable to that of the control. The affected positions are distributed throughout the protein. Helices I and X and transmembrane residues Asp and Tyr are most affected by cysteine replacement, while helix IX, the cytoplasmic middle-loop, and C-terminal tail are least affected. Single-Cys replacements at the major sugar-binding positions (K18, D19, D124, W128, R149, and W342) or at positions important for cation binding (D55, N58, D59, and T121) abolished the Na+-coupled active transport, as expected. We mapped 50 loss-of-function mutants outside of these substrate-binding sites that suffered from defects in protein expression/stability or conformational dynamics. This complete Cys-scanning mutagenesis study indicates that MelBSt is highly susceptible to single-Cys mutations, and this library will be a useful tool for further structural and functional studies to gain insights into the cation-coupled symport mechanism for Na+-coupled MFS transporters.


Subject(s)
Cysteine/metabolism , Symporters/genetics , Bacterial Proteins/metabolism , Binding Sites , Biological Transport, Active , Ion Transport , Models, Molecular , Mutagenesis/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Sodium/metabolism , Symporters/metabolism
12.
Acta Biomater ; 128: 393-407, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33933694

ABSTRACT

Membrane protein structures provide atomic level insight into essential biochemical processes and facilitate protein structure-based drug design. However, the inherent instability of these bio-macromolecules outside lipid bilayers hampers their structural and functional study. Detergent micelles can be used to solubilize and stabilize these membrane-inserted proteins in aqueous solution, thereby enabling their downstream characterizations. Membrane proteins encapsulated in detergent micelles tend to denature and aggregate over time, highlighting the need for development of new amphiphiles effective for protein solubility and stability. In this work, we present newly-designed maltoside detergents containing a pendant chain attached to a glycerol-decorated tris(hydroxymethyl)methane (THM) core, designated GTMs. One set of the GTMs has a hydrophobic pendant (ethyl chain; E-GTMs), and the other set has a hydrophilic pendant (methoxyethoxylmethyl chain; M-GTMs) placed in the hydrophobic-hydrophilic interfaces. The two sets of GTMs displayed profoundly different behaviors in terms of detergent self-assembly and protein stabilization efficacy. These behaviors mainly arise from the polarity difference between two pendants (ethyl and methoxyethoxylmethyl chains) that results in a large variation in detergent conformation between these sets of GTMs in aqueous media. The resulting high hydrophobic density in the detergent micelle interior is likely responsible for enhanced efficacy of the M-GTMs for protein stabilization compared to the E-GTMs and a gold standard detergent DDM. A representative GTM, M-GTM-O12, was more effective for protein stability than some recently developed detergents including LMNG. This is the first case study investigating the effect of pendant polarity on detergent geometry correlated with detergent efficacy for protein stabilization. STATEMENT OF SIGNIFICANCE: This study introduces new amphiphiles for use as biochemical tools in membrane protein studies. We identified a few hydrophilic pendant-bearing amphiphiles such as M-GTM-O11 and M-GTM-O12 that show remarkable efficacy for membrane protein solubilization and stabilization compared to a gold standard DDM, the hydrophobic counterparts (E-GTMs) and a significantly optimized detergent LMNG. In addition, detergent results obtained in the current study reveals the effect of detergent pendant polarity on protein solubility and stability. Thus, the current study represents both significant chemical and conceptual advance. The detergent tools and design principle introduced here advance protein science and facilitate structure-based drug design and development.


Subject(s)
Detergents , Membrane Proteins , Detergents/pharmacology , Hydrophobic and Hydrophilic Interactions , Micelles , Molecular Conformation , Protein Stability , Solubility
13.
Acta Biomater ; 112: 250-261, 2020 08.
Article in English | MEDLINE | ID: mdl-32522715

ABSTRACT

Glucoside detergents are successfully used for membrane protein crystallization mainly because of their ability to form small protein-detergent complexes. In a previous study, we introduced glucose neopentyl glycol (GNG) amphiphiles with a branched diglucoside structure that has facilitated high resolution crystallographic structure determination of several membrane proteins. Like other glucoside detergents, however, these GNGs were less successful than DDM in stabilizing membrane proteins, limiting their wide use in protein structural study. As a strategy to improve GNG efficacy for protein stabilization, we introduced two different alkyl chains (i.e., main and pendant chains) into the GNG scaffold while maintaining the branched diglucoside head group. Of these pendant-bearing GNGs (P-GNGs), three detergents (GNG-2,14, GNG-3,13 and GNG-3,14) were not only notably better than both DDM (a gold standard detergent) and the previously described GNGs at stabilizing all six membrane proteins tested here, but were also as efficient as DDM at membrane protein extraction. The results suggest that the C14 main chain of the P-GNGs is highly compatible with the hydrophobic widths of membrane proteins, while the C2/C3 pendant chain is effective at strengthening detergent hydrophobic interactions. Based on the marked effect on protein stability and solubility, these glucoside detergents hold significant potential for membrane protein structural study. Furthermore, the independent roles of the detergent two alkyl chains first introduced in this study have shed light on new amphiphile design for membrane protein study. STATEMENT OF SIGNIFICANCE: Detergent efficacy for protein stabilization tends to be protein-specific, thus it is challenging to find a detergent that is effective at stabilizing multiple membrane proteins. By incorporating a pendant chain into our previous GNG scaffold, we prepared pendant chain-bearing GNGs (P-GNGs) and identified three P-GNGs that were highly effective at stabilizing all membrane proteins tested here including two GPCRs. In addition, the new detergents were as efficient as DDM at extracting membrane proteins, enabling use of these detergents over the multiple steps of protein isolation. The key difference between the P-GNGs and other glucoside detergents, the presence of a pendant chain, is likely to be responsible for their markedly enhanced protein stabilization behavior.


Subject(s)
Detergents , Membrane Proteins , Detergents/pharmacology , Glucose , Glycols , Protein Stability
14.
ACS Chem Biol ; 15(6): 1697-1707, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32501004

ABSTRACT

Membrane proteins are widely studied in detergent micelles, a membrane-mimetic system formed by amphiphilic compounds. However, classical detergents have serious limitations in their utility, particularly for unstable proteins such as eukaryotic membrane proteins and membrane protein complexes, and thus, there is an unmet need for novel amphiphiles with enhanced ability to stabilize membrane proteins. Here, we developed a new class of malonate-derived detergents with four glucosides, designated malonate-derived tetra-glucosides (MTGs), and compared these new detergents with previously reported octyl glucose neopentyl glycol (OGNG) and n-dodecyl-ß-d-maltoside (DDM). When tested with two G-protein coupled receptors (GPCRs) and three transporters, a couple of MTGs consistently conferred enhanced stability to all tested proteins compared to DDM and OGNG. As a result of favorable behaviors for a range of membrane proteins, these MTGs have substantial potential for membrane protein research. This study additionally provides a new detergent design principle based on the effect of a polar functional group (i.e., ether) on protein stability depending on its position in the detergent scaffold.


Subject(s)
Detergents/chemistry , Glucosides/chemistry , Membrane Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Micelles , Molecular Structure , Protein Stability
15.
J Am Chem Soc ; 141(50): 19677-19687, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31809039

ABSTRACT

Despite their major biological and pharmacological significance, the structural and functional study of membrane proteins remains a significant challenge. A main issue is the isolation of these proteins in a stable and functional state from native lipid membranes. Detergents are amphiphilic compounds widely used to extract membrane proteins from the native membranes and maintain them in a stable form during downstream analysis. However, due to limitations of conventional detergents, it is essential to develop novel amphiphiles with optimal properties for protein stability in order to advance membrane protein research. Here we designed and synthesized 1,3,5-triazine-cored dimaltoside amphiphiles derived from cyanuric chloride. By introducing variations in the alkyl chain linkage (ether/thioether) and an amine-functionalized diol linker (serinol/diethanolamine), we prepared two sets of 1,3,5-triazine-based detergents. When tested with several model membrane proteins, these agents showed remarkable efficacy in stabilizing three transporters and two G protein-coupled receptors. Detergent behavior substantially varied depending on the detergent structural variation, allowing us to explore detergent structure-property-efficacy relationships. The 1,3,5-triazine-based detergents introduced here have significant potential for membrane protein study as a consequence of their structural diversity and universal stabilization efficacy for several membrane proteins.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Maltose/chemistry , Maltose/pharmacology , Membrane Proteins/chemistry , Membrane Proteins/isolation & purification , Triazines/chemistry , Alkylation , Detergents/chemistry , Detergents/pharmacology , Protein Stability/drug effects
16.
Int J Mol Sci ; 20(19)2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31591285

ABSTRACT

The intracellular level of amino acids is determined by the balance between their anabolic and catabolic pathways. L-alanine is anabolized by three L-alanine synthesizing enzymes and catabolized by two racemases and D-amino acid dehydrogenase (DadA). In addition, its level is regulated by L-alanine movement across the inner membrane. We identified the novel gene alaE, encoding an L-alanine exporter. To elucidate the physiological function of L-Alanine exporter, AlaE, we determined the susceptibility of alaE-, dadA-, and alaE/dadA-deficient mutants, derived from the wild-type strain MG1655, to L-alanyl-L-alanine (Ala-Ala), which shows toxicity to the L-alanine-nonmetabolizing variant lacking alaE. The dadA-deficient mutant has a similar minimum inhibitory concentration (MIC) (>1.25 mg/mL) to that observed in MG1655. However, alaE- and alaE/dadA-deficient mutants had MICs of 0.04 and 0.0025 mg/mL, respectively. The results suggested that the efficacy of AlaE to relieve stress caused by toxic intracellular accumulation of L-alanine was higher than that of DadA. Consistent with this, the intracellular level of alanine in the alaE-mutant was much higher than that in MG1655 and the dadA-mutant. We, therefore, conclude that AlaE functions as a 'safety-valve' to prevent the toxic level accumulation of intracellular L-alanine under a peptide-rich environment, such as within the animal intestine.


Subject(s)
Alanine/metabolism , Amino Acid Transport Systems, Neutral/metabolism , D-Amino-Acid Oxidase/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/growth & development , Alanine/toxicity , Amino Acid Transport Systems, Neutral/genetics , Biological Transport , D-Amino-Acid Oxidase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Microbial Viability , Mutation , Stress, Physiological
17.
Arch Microbiol ; 199(1): 105-114, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27572251

ABSTRACT

The Escherichia coli alaE gene encodes the L-alanine exporter, AlaE, that catalyzes active export of L-alanine using proton electrochemical potential. The transporter comprises only 149 amino acid residues and four predicted transmembrane domains (TMs), which contain three charged amino acid residues. The AlaE-deficient L-alanine non-metabolizing cells (ΔalaE cells) appeared hypersusceptible to L-alanyl-L-alanine showing a minimum inhibitory concentration (MIC) of 2.5 µg/ml for the dipeptide due to a toxic accumulation of L-alanine. To elucidate the mechanism by which AlaE exports L-alanine, we replaced charged amino acid residues in the TMs, glutamic acid-30 (TM-I), arginine-45 (TM-II), and aspartic acid-84 (TM-III) with their respective charge-conserved amino acid or a net neutral cysteine. The ΔalaE cells producing R45K or R45C appeared hypersusceptible to the dipeptide, indicating that arginine-45 is essential for AlaE activity. MIC of the dipeptide in the ΔalaE cells expressing E30D and E30C was 156 µg/ml and >10,000 µg/ml, respectively, thereby suggesting that a negative charge at this position is not essential. The ΔalaE cells expressing D84E or D84C showed an MIC >10,000 and 78 µg/ml, respectively, implying that a negative charge is required at this position. These results were generally consistent with that of the L-alanine accumulation experiments in intact cells. We therefore concluded that charged amino acid residues (R45 and D84) in the AlaE transmembrane domain play a pivotal role in L-alanine export. Replacement of three cysteine residues at C22, C28 (both in TM-I), and C135 (C-terminal region) with alanine showed only a marginal effect on L-alanine export.


Subject(s)
Alanine/metabolism , Amino Acid Transport Systems, Neutral/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Amino Acid Motifs , Amino Acid Substitution , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Arginine/metabolism , Aspartic Acid/metabolism , Biological Transport , Cysteine/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutagenesis, Site-Directed , Protein Domains
18.
Microbiology (Reading) ; 162(7): 1243-1252, 2016 07.
Article in English | MEDLINE | ID: mdl-27166225

ABSTRACT

Escherichia coli has an l-alanine export system that protects the cells from toxic accumulation of intracellular l-alanine in the presence of l-alanyl-l-alanine (l-Ala-l-Ala). When a DadA-deficient strain was incubated with 6.0 mM l-Ala-l-Ala, we detected l-alanine and d-alanine using high-performance liquid chromatography (HPLC) analysis at a level of 7.0 mM and 3.0 mM, respectively, after 48 h incubation. Treatment of the culture supernatant with d-amino acid oxidase resulted in the disappearance of a signal corresponding to d-alanine. Additionally, the culture supernatant enabled a d-alanine auxotroph to grow without d-alanine supplementation, confirming that the signal detected by HPLC was authentic d-alanine. Upon introduction of an expression vector harbouring the alanine racemase genes, alr or dadX, the extracellular level of d-alanine increased to 11.5 mM and 8.5 mM, respectively, under similar conditions, suggesting that increased metabolic flow from l-alanine to d-alanine enhanced d-alanine secretion. When high-density DadA-deficient cells preloaded with l-Ala-l-Ala were treated with 20 µM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), secretion of both l-alanine and d-alanine was enhanced ~twofold compared with that in cells without CCCP treatment. In contrast, the ATPase inhibitor dicyclohexylcarbodiimide did not exert such an effect on the l-alanine and d-alanine secretion. Furthermore, inverted membrane vesicles prepared from DadA-deficient cells lacking the l-alanine exporter AlaE accumulated [3H]D-alanine in an energy-dependent manner. This energy-dependent accumulation of [3H]D-alanine was strongly inhibited by CCCP. These results indicate that E. coli has a transport system(s) that exports d-alanine and that this function is most likely modulated by proton electrochemical potential.


Subject(s)
Alanine/metabolism , Biological Transport/physiology , Dipeptides/metabolism , Escherichia coli/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Alanine/chemistry , Alanine Racemase/genetics , Biological Transport/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Chromatography, High Pressure Liquid , D-Amino-Acid Oxidase/pharmacology , Dicyclohexylcarbodiimide/pharmacology , Escherichia coli/genetics
19.
Analyst ; 140(17): 5881-4, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26221631

ABSTRACT

Imidazole was tethered to the C5 position of thymine in an ATP-binding DNA aptamer with two types of linkers, and the affinities of each aptamer for ATP and AMP were determined by surface plasmon resonance measurements. The imidazole-tethered aptamers exhibited higher affinity for ATP, almost independently of the linker structure or the modification site.


Subject(s)
Adenosine Monophosphate/analysis , Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , Surface Plasmon Resonance , Base Sequence , Binding Sites , DNA/chemistry , Imidazoles/chemistry , Spectrometry, Mass, Electrospray Ionization
20.
Microbiologyopen ; 4(4): 632-43, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26073055

ABSTRACT

We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 µmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed.


Subject(s)
Alanine/metabolism , Alanine/toxicity , Amino Acid Transport Systems, Neutral/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Amino Acid Transport Systems, Neutral/deficiency , Biological Transport , Dipeptides/metabolism , Dipeptides/toxicity , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Deletion , Genetic Complementation Test , Microbial Sensitivity Tests , Plasmids , Proton-Motive Force
SELECTION OF CITATIONS
SEARCH DETAIL
...