Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667286

ABSTRACT

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Ischemic Stroke , Neural Stem Cells , Synapses , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neural Stem Cells/cytology , Ischemic Stroke/pathology , Ischemic Stroke/therapy , Rats , Synapses/metabolism , Male , Neurites/metabolism , Brain/pathology , Brain Ischemia/therapy , Brain Ischemia/pathology , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Stroke/therapy , Stroke/pathology
2.
Stem Cells Transl Med ; 8(7): 627-638, 2019 07.
Article in English | MEDLINE | ID: mdl-30887735

ABSTRACT

The use of human induced pluripotent stem cells (hiPSCs) and recent advances in cell engineering have opened new prospects for cell-based therapy. However, there are concerns that must be addressed prior to their broad clinical applications and a major concern is tumorigenicity. Suicide gene approaches could eliminate wayward tumor-initiating cells even after cell transplantation, but their efficacy remains controversial. Another concern is the safety of genome editing. Our knowledge of human genomic safe harbors (GSHs) is still insufficient, making it difficult to predict the influence of gene integration on nearby genes. Here, we showed the topological architecture of human GSH candidates, AAVS1, CCR5, human ROSA26, and an extragenic GSH locus on chromosome 1 (Chr1-eGSH). Chr1-eGSH permitted robust transgene expression, but a 2 Mb-distant gene within the same topologically associated domain showed aberrant expression. Although knockin iPSCs carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were sufficiently sensitive to ganciclovir in vitro, the resulting teratomas showed varying degrees of resistance to the drug in vivo. Our findings suggest that the Chr1-eGSH is not suitable for therapeutic gene integration and highlight that topological analysis could facilitate exploration of human GSHs for regenerative medicine applications. Our data indicate that the HSV-TK/ganciclovir suicide gene approach alone may be not an adequate safeguard against the risk of teratoma, and suggest that the combination of several distinct approaches could reduce the risks associated with cell therapy. Stem Cells Translational Medicine 2019;8:627&638.


Subject(s)
Gene Editing , Genes, Transgenic, Suicide , Genome, Human , Induced Pluripotent Stem Cells/metabolism , Animals , Cell Line , Cell- and Tissue-Based Therapy , Ganciclovir/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Mice, Inbred NOD , Mice, SCID , Simplexvirus/enzymology , Simplexvirus/genetics , Teratoma/genetics , Teratoma/metabolism , Thymidine Kinase/genetics , Thymidine Kinase/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
3.
PLoS One ; 6(10): e26034, 2011.
Article in English | MEDLINE | ID: mdl-22022498

ABSTRACT

Gefitinib (Iressa) is an inhibitor of the epidermal growth factor receptor (EGFR) that has shown promising activity in the treatment of patients with non-small cell lung cancer (NSCLC). However, adverse side effects of gefitinib treatment, such as respiratory dysfunction, have limited the therapeutic benefit of this targeting strategy. The present results show that this adverse effect can be attributed to the inhibition of the novel gefitinib target GAK (Cyclin G-associated kinase), which is as potently inhibited by the drug as the tyrosine kinase activity of EGFR. Knockout mice expressing the kinase-dead form of GAK (GAK-kd) died within 30 min after birth primarily due to respiratory dysfunction. Immunohistochemical analysis revealed that surfactant protein A (SP-A) was abundant within alveolar spaces in GAK-kd(+/+) mice but not in GAK-kd(-/-) pups. E-cadherin and phosphorylated EGFR signals were also abnormal, suggesting the presence of flat alveolar cells with thin junctions. These results suggest that inhibition of GAK by gefitinib may cause pulmonary alveolar dysfunction, and the present study may help prevent side effects associated with gefitinib therapy in NSCLC patients.


Subject(s)
Lung/drug effects , Lung/physiopathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Quinazolines/pharmacology , Amino Acid Sequence , Animals , Animals, Newborn , Cadherins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cesarean Section , Embryo, Mammalian/pathology , ErbB Receptors/metabolism , Fibroblasts/drug effects , Fibroblasts/enzymology , Fibroblasts/pathology , Gefitinib , Gene Knockdown Techniques , Lung/growth & development , Lung/pathology , Mice , Mice, Knockout , Molecular Sequence Data , Phenotype , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/deficiency , Protein Structure, Tertiary , Protein Transport/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...