Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 556: 179-184, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33839413

ABSTRACT

Trinucleotide repeat sequences (TRSs), consisting of 10 unique classes of repeats in DNA, are members of microsatellites and abundantly and non-randomly distributed in many eukaryotic genomes. The lengths of TRSs are mutable, and the expansions of several TRSs are implicated in hereditary neurological diseases. However, the underlying causes of the biased distribution and the dynamic properties of TRSs in the genome remain elusive. Here, we examined the effects of TRSs on nucleosome formation in vivo by histone H4-S47C site-directed chemical cleavages, using well-defined yeast minichromosomes in which each of the ten TRS classes resided in the central region of a positioned nucleosome. We showed that (AAT)12 and (ACT)12 act as strong nucleosome-promoting sequences, while (AGG)12 and (CCG)12 act as nucleosome-excluding sequences in vivo. The local histone binding affinity scores support the idea that nucleosome formation in TRSs, except for (AGG)12, is mainly determined by the affinity for the histone octamers. Overall, our study presents a framework for understanding the nucleosome-forming abilities of TRSs.


Subject(s)
Nucleosomes/chemistry , Nucleosomes/genetics , Saccharomyces cerevisiae/genetics , Trinucleotide Repeats/genetics , Base Sequence/genetics , Chromosomes, Fungal/chemistry , Chromosomes, Fungal/genetics , Chromosomes, Fungal/metabolism , DNA/chemistry , DNA/genetics , DNA/metabolism , Histones/metabolism , Nucleosomes/metabolism , Saccharomyces cerevisiae/metabolism
2.
PLoS One ; 12(10): e0186974, 2017.
Article in English | MEDLINE | ID: mdl-29073207

ABSTRACT

Micrococcal nuclease (MNase) has been widely used for analyses of nucleosome locations in many organisms. However, due to its sequence preference, the interpretations of the positions and occupancies of nucleosomes using MNase have remained controversial. Next-generation sequencing (NGS) has also been utilized for analyses of MNase-digests, but some technical biases are commonly present in the NGS experiments. Here, we established a gel-based method to map nucleosome positions in Saccharomyces cerevisiae, using isolated nuclei as the substrate for the histone H4 S47C-site-directed chemical cleavage in parallel with MNase digestion. The parallel mapping allowed us to compare the chemically and enzymatically cleaved sites by indirect end-labeling and primer extension mapping, and thus we could determine the nucleosome positions and the sizes of the nucleosome-free regions (or nucleosome-depleted regions) more accurately, as compared to nucleosome mapping by MNase alone. The analysis also revealed that the structural features of the nucleosomes flanked by the nucleosome-free region were different from those within regularly arrayed nucleosomes, showing that the structures and dynamics of individual nucleosomes strongly depend on their locations. Moreover, we demonstrated that the parallel mapping results were generally consistent with the previous genome-wide chemical mapping and MNase-Seq results. Thus, the gel-based parallel mapping will be useful for the analysis of a specific locus under various conditions.


Subject(s)
Chromosome Mapping/methods , Hydroxyl Radical/metabolism , Micrococcal Nuclease/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Aldose-Ketose Isomerases/genetics , DNA, Fungal/genetics , Genetic Loci/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...