Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Immunol ; 66(3): 145-156, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34888908

ABSTRACT

Streptococcus mutans, a cariogenic pathogen, adheres to the tooth surface and forms a biofilm. Bacterial cell surface proteins are associated with adherence to substrates. Sortase A (SrtA) mediates the localization of proteins with an LPXTG motif-containing proteins to the cell surface by covalent binding to peptidoglycan. In S. mutans UA159, six SrtA-dependent proteins, SpaP, WapA, WapE, DexA, FruA, and GbpC, were identified. Although some of these proteins were characterized, a comprehensive analysis of the six proteins has not been reported. In this study, we constructed mutants deficient in each of these proteins and the SrtA-deficient mutant. The SrtA-deficient mutant showed drastically decreased binding to salivary components, biofilm formation, bacterial coaggregation activity, hydrophobicity, and cellular matrix binding (collagen type I, fibronectin, and laminin). The SpaP-deficient mutant showed significantly reduced binding to salivary components and partially increased coaggregation with Porphyromonas gingivalis, and decreased hydrophobicity, and collagen binding. The WapA-deficient mutant showed slightly decreased coaggregation with Fusobacterium nucleatum. Although the SrtA-deficient mutant showed drastically altered phenotypes, all SrtA-dependent protein-deficient mutants, except the SpaP-deficient mutant, did not show considerable alterations in binding to salivary components. These results indicate that the six proteins may coordinately contribute to these activities. In addition, using genomic data of 125 S. mutans strains, the amino acid sequences of each surface protein were compared and many variations were found among strains, which may affect the phenotype of cell surface proteins in S. mutans.


Subject(s)
Aminoacyltransferases , Streptococcus mutans , Aminoacyltransferases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Membrane Proteins , Streptococcus mutans/genetics , Streptococcus mutans/metabolism
2.
Microbiol Immunol ; 63(7): 251-260, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31166029

ABSTRACT

Streptococcus mutans is a cariogenic bacterium that localizes in the oral cavity. Glycyrrhetinic acid (GRA) is a major component of licorice extract. GRA and several derivatives, including disodium succinoyl glycyrrhetinate (GR-SU), are known to have anti-inflammatory effects in humans. In this study, the antimicrobial effect of GRA and its derivatives against the S. mutans UA159 strain were investigated. Minimum inhibitory concentrations (MICs) of GRA and GR-SU showed antibacterial activity against the S. mutans strain, whereas other tested derivatives did not. Because GR-SU is more soluble than GRA, GR-SU was used for further experiments. The antibacterial activity of GR-SU against 100 S. mutans strains was evaluated and it was found that all strains are susceptible to GR-SU, with MIC values below 256 µg/mL. A cell viability assay showed that GR-SU has a bacteriostatic effect on S. mutans cells. As to growth kinetics, sub-MICs of GR-SU inhibited growth. The effect of GR-SU on S. mutans virulence was then investigated. GR-SU at sub-MICs suppresses biofilm formation. Additionally, GR-SU greatly suppresses the pH drop caused by the addition of glucose and glucose-induced expression of the genes responsible for acid production (ldh and pykF) and tolerance (aguD and atpD). Additionally, expression of enolase, which is responsible for the carbohydrate phosphotransferase system, was not increased in the presence of GR-SU, indicating that GR-SU suppresses incorporation of sugars into S. mutans. In conclusion, GR-SU has antibacterial activity against S. mutans and also decreases S. mutans virulence.


Subject(s)
Anti-Bacterial Agents/pharmacology , Glycyrrhetinic Acid/pharmacology , Glycyrrhiza/chemistry , Plant Extracts/pharmacology , Streptococcus mutans/drug effects , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Biofilms/growth & development , Gene Expression Regulation, Bacterial/drug effects , Genes, Bacterial/genetics , Glucose/metabolism , Glycyrrhetinic Acid/chemistry , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Microbial Viability/drug effects , Plant Extracts/chemistry , Streptococcus mutans/genetics , Streptococcus mutans/growth & development , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...