Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hosp Infect ; 126: 16-20, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35452719

ABSTRACT

BACKGROUND: The efficacy of bipolar ionization in the healthcare setting has yet to be proven. A major limitation of studies sponsored by industry has been the assessment of efficiency within test chambers in which ozone levels are not adequately controlled. AIM: To assess the effectiveness of bipolar ionization against antimicrobial-resistant bacteria, fungi and human coronavirus within a controlled test chamber designed to mitigate the effect of ozone. METHODS: Bacteria- and fungi-inoculated gauze pads, and human coronavirus 229E-inoculated stainless steel plates were placed within the vicinity of the AIO-2 bipolar ionizer and left at room temperature (2 h for coronavirus and 4 h for bacteria and fungi). FINDINGS: Four hours of exposure to bipolar ionization showed a 1.23-4.76 log reduction, corresponding to a 94.2->99.9% colony-forming units/gauze reduction, in Clostridioides difficile, Klebsiella pneumoniae carbapenemase-producing K. pneumoniae, meticillin-resistant Staphylococcus aureus and multi-drug-resistant S. aureus. A 1.2 log 50% tissue culture infectious dose reduction in human coronavirus was observed after 2 h. CONCLUSION: The assessment of bipolar ionization systems merits further investigation as an infection control measure.


Subject(s)
Anti-Infective Agents , Coronavirus , Methicillin-Resistant Staphylococcus aureus , Ozone , Aspergillus , Bacteria , Humans , Saccharomyces cerevisiae
SELECTION OF CITATIONS
SEARCH DETAIL
...