Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 707: 149783, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38493746

ABSTRACT

Ingestion of Porphyromonas gingivalis, a periodontal pathogen, disrupts the intestinal barrier in mice. However, the involvement of outer membrane vesicles (OMVs) secreted from P. gingivalis in the destruction of the intestinal barrier remains unclear. In this study, we tested the hypothesis that OMVs carrying gingipains, the major cysteine proteases produced by P. gingivalis, affects the intestinal barrier function. OMVs increased the permeability of the Caco-2 cell monolayer, a human intestinal epithelial cell line, accompanied by degradation of the tight junction protein occludin. In contrast, OMVs prepared from mutant strains devoid of gingipains failed to induce intestinal barrier dysfunction or occludin degradation in Caco-2 cells. A close histological examination revealed the intracellular localization of gingipain-carrying OMVs. Gingipain activity was detected in the cytosolic fraction of Caco-2 cells after incubation with OMVs. These results suggest that gingipains were internalized into intestinal cells through OMVs and transported into the cytosol, where they then directly degraded occludin from the cytosolic side. Thus, P. gingivalis OMVs might destroy the intestinal barrier and induce systemic inflammation via OMV itself or intestinal substances leaked into blood vessels, causing various diseases.


Subject(s)
Adhesins, Bacterial , Porphyromonas gingivalis , Animals , Mice , Humans , Gingipain Cysteine Endopeptidases/metabolism , Caco-2 Cells , Porphyromonas gingivalis/physiology , Cytosol/metabolism , Occludin/metabolism , Adhesins, Bacterial/metabolism
2.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499428

ABSTRACT

Recently, the effects of antibacterial peptides are suggested to have therapeutic potential in Alzheimer's disease. Furthermore, systemic treatment of Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) induced Alzheimer's disease-like neuropathological changes in middle-aged mice. Then, we examined whether human ß-defensins (hBDs), antimicrobial peptides produced by the oral mucosa and salivary glands, can suppress Pg LPS-induced oxidative and inflammatory responses by microglia. hBD3 (1 µM) significantly suppressed Pg LPS-induced production of nitric oxide and interleukin-6 (IL-6) by MG6 cells, a mouse microglial cell line. hBD3 (1 µM) also significantly inhibited Pg LPS-induced expression of IL-6 by HMC3 cells, a human microglial cell line. In contrast, neither hBD1, hBD2 nor hBD4 failed to inhibit their productions. Furthermore, hBD3 suppressed Pg LPS-induced p65 nuclear translocation through the IκBα degradation. Pg LPS-induced expression of IL-6 was significantly suppressed by E64d, a cysteine protease inhibitor, and CA-074Me, a known specific inhibitor for cathepsin B, but not by pepstatin A, an aspartic protease inhibitor. Interestingly, hBD3 significantly inhibited enzymatic activities of recombinant human cathepsins B and L, lysosomal cysteine proteases, and their intracellular activities in MG6 cells. Therefore, hBD3 suppressed oxidative and inflammatory responses of microglia through the inhibition of cathepsins B and L, which enzymatic activities are necessary for the NF-κB activation.


Subject(s)
Alzheimer Disease , beta-Defensins , Animals , Humans , Mice , beta-Defensins/metabolism , Cathepsin B/metabolism , Interleukin-6/metabolism , Lipopolysaccharides , Microglia/metabolism , NF-kappa B/metabolism , Porphyromonas gingivalis/metabolism , Cathepsin L/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...