Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36899968

ABSTRACT

Monkeypox or Mpox is an infectious virus predominantly found in Africa. It has spread to many countries since its latest outbreak. Symptoms such as headaches, chills, and fever are observed in humans. Lumps and rashes also appear on the skin (similar to smallpox, measles, and chickenpox). Many artificial intelligence (AI) models have been developed for accurate and early diagnosis. In this work, we systematically reviewed recent studies that used AI for mpox-related research. After a literature search, 34 studies fulfilling prespecified criteria were selected with the following subject categories: diagnostic testing of mpox, epidemiological modeling of mpox infection spread, drug and vaccine discovery, and media risk management. In the beginning, mpox detection using AI and various modalities was described. Other applications of ML and DL in mitigating mpox were categorized later. The various machine and deep learning algorithms used in the studies and their performance were discussed. We believe that a state-of-the-art review will be a valuable resource for researchers and data scientists in developing measures to counter the mpox virus and its spread.

2.
Healthcare (Basel) ; 10(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36292259

ABSTRACT

Acute lymphoblastic leukemia (ALL) is a rare type of blood cancer caused due to the overproduction of lymphocytes by the bone marrow in the human body. It is one of the common types of cancer in children, which has a fair chance of being cured. However, this may even occur in adults, and the chances of a cure are slim if diagnosed at a later stage. To aid in the early detection of this deadly disease, an intelligent method to screen the white blood cells is proposed in this study. The proposed intelligent deep learning algorithm uses the microscopic images of blood smears as the input data. This algorithm is implemented with a convolutional neural network (CNN) to predict the leukemic cells from the healthy blood cells. The custom ALLNET model was trained and tested using the microscopic images available as open-source data. The model training was carried out on Google Collaboratory using the Nvidia Tesla P-100 GPU method. Maximum accuracy of 95.54%, specificity of 95.81%, sensitivity of 95.91%, F1-score of 95.43%, and precision of 96% were obtained by this accurate classifier. The proposed technique may be used during the pre-screening to detect the leukemia cells during complete blood count (CBC) and peripheral blood tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...