Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Immunity ; 56(12): 2803-2815.e6, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38035879

ABSTRACT

Somatic hypermutation (SHM) drives affinity maturation and continues over months in SARS-CoV-2-neutralizing antibodies (nAbs). However, several potent SARS-CoV-2 antibodies carry no or only a few mutations, leaving the question of how ongoing SHM affects neutralization unclear. Here, we reverted variable region mutations of 92 antibodies and tested their impact on SARS-CoV-2 binding and neutralization. Reverting higher numbers of mutations correlated with decreasing antibody functionality. However, for some antibodies, including antibodies of the public clonotype VH1-58, neutralization of Wu01 remained unaffected. Although mutations were dispensable for Wu01-induced VH1-58 antibodies to neutralize Alpha, Beta, and Delta variants, they were critical for Omicron BA.1/BA.2 neutralization. We exploited this knowledge to convert the clinical antibody tixagevimab into a BA.1/BA.2 neutralizer. These findings broaden our understanding of SHM as a mechanism that not only improves antibody responses during affinity maturation but also contributes to antibody diversification, thus increasing the chances of neutralizing viral escape variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , Antibodies, Viral , Mutation/genetics , Antibodies, Neutralizing
2.
J Mol Biol ; 433(15): 167099, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34119488

ABSTRACT

Glycans decorate the cell surface, secreted glycoproteins and glycolipids, and altered glycans are often found in cancers. Despite their high diagnostic and therapeutic potential, however, glycans are polar and flexible molecules that are quite challenging for the development and design of high-affinity binding antibodies. To understand the mechanisms by which glycan neoantigens are specifically recognized by antibodies, we analyze the biomolecular recognition of the tumor-associated carbohydrate antigen CA19-9 by two distinct antibodies using X-ray crystallography. Despite the potential plasticity of glycans and the very different antigen-binding surfaces presented by the antibodies, both structures reveal an essentially identical extended CA19-9 conformer, suggesting that this conformer's stability selects the antibodies. Starting from the bound structure of one of the antibodies, we use the AbLIFT computational algorithm to design a variant with seven core mutations in the variable domain's light-heavy chain interface that exhibits tenfold improved affinity for CA19-9. The results reveal strategies used by antibodies to specifically recognize glycan antigens and show how automated antibody-optimization methods may be used to enhance the clinical potential of existing antibodies.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , CA-19-9 Antigen/immunology , Computational Biology/methods , Algorithms , Animals , Antibodies, Monoclonal/genetics , Antibody Affinity , Crystallography, X-Ray , Humans , Mice , Models, Molecular , Mutation , Protein Conformation
3.
Cancers (Basel) ; 12(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007970

ABSTRACT

Glycosylation patterns commonly change in cancer, resulting in expression of tumor-associated carbohydrate antigens (TACA). While promising, currently available anti-glycan antibodies are not useful for clinical cancer therapy. Here, we show that potent anti-glycan antibodies can be engineered to acquire cancer therapeutic efficacy. We designed yeast surface display to generate and select for therapeutic antibodies against the TACA SLea (CA19-9) in colon and pancreatic cancers. Elite clones showed increased affinity, better specificity, improved binding of human pancreatic and colon cancer cell lines, and increased complement-dependent therapeutic efficacy. Molecular modeling explained the structural basis for improved antibody functionality at the molecular level. These new tools of directed molecular evolution and selection for effective anti-glycan antibodies, provide insights into the mechanisms of cancer therapy targeting glycosylation, and provide major methodological advances that are likely to open up innovative avenues of research in the field of cancer theranostics.

5.
Nat Commun ; 11(1): 67, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31900422

ABSTRACT

Certain arenaviruses that circulate in rodent populations can cause life-threatening hemorrhagic fevers when they infect humans. Due to their efficient transmission, arenaviruses pose a severe risk for outbreaks and might be exploited as biological weapons. Effective countermeasures against these viruses are highly desired. Ideally, a single remedy would be effective against many or even all the pathogenic viruses in this family. However, despite the fact that all pathogenic arenaviruses from South America utilize transferrin receptor 1 (TfR1) as a cellular receptor, their viral glycoproteins are highly diversified, impeding efforts to isolate cross-neutralizing antibodies. Here we address this problem using a rational design approach to target TfR1-tropic arenaviruses with high potency and breadth. The pan-reactive molecule is highly effective against all arenaviruses that were tested, offering a universal therapeutic approach. Our design scheme avoids the shortcomings of previous immunoadhesins and can be used to combat other zoonotic pathogens.


Subject(s)
Arenaviridae Infections/therapy , Arenavirus/immunology , Immunotherapy , Receptors, Transferrin/chemistry , Receptors, Transferrin/immunology , Receptors, Virus/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Arenavirus/chemistry , Arenavirus/genetics , Drug Design , Humans , Receptors, Transferrin/genetics , Receptors, Virus/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology
6.
PLoS Comput Biol ; 15(8): e1007207, 2019 08.
Article in English | MEDLINE | ID: mdl-31442220

ABSTRACT

Antibodies developed for research and clinical applications may exhibit suboptimal stability, expressibility, or affinity. Existing optimization strategies focus on surface mutations, whereas natural affinity maturation also introduces mutations in the antibody core, simultaneously improving stability and affinity. To systematically map the mutational tolerance of an antibody variable fragment (Fv), we performed yeast display and applied deep mutational scanning to an anti-lysozyme antibody and found that many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface, within the antibody core. Rosetta design combined enhancing mutations, yielding a variant with tenfold higher affinity and substantially improved stability. To make this approach broadly accessible, we developed AbLIFT, an automated web server that designs multipoint core mutations to improve contacts between specific Fv light and heavy chains (http://AbLIFT.weizmann.ac.il). We applied AbLIFT to two unrelated antibodies targeting the human antigens VEGF and QSOX1. Strikingly, the designs improved stability, affinity, and expression yields. The results provide proof-of-principle for bypassing laborious cycles of antibody engineering through automated computational affinity and stability design.


Subject(s)
Antibody Affinity , Drug Design , Immunoglobulin Variable Region/genetics , Protein Engineering/methods , Animals , Antibody Affinity/genetics , Computational Biology , HEK293 Cells , Humans , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/genetics , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Variable Region/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Oxidoreductases Acting on Sulfur Group Donors/antagonists & inhibitors , Oxidoreductases Acting on Sulfur Group Donors/immunology , Peptide Library , Protein Engineering/statistics & numerical data , Protein Stability , Software , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/immunology
7.
J Virol ; 93(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30728269

ABSTRACT

There are two predominant subgroups in the Arenaviridae family of viruses, the Old World and the New World viruses, that use distinct cellular receptors for entry. While New World viruses typically elicit good neutralizing antibody responses, the Old World viruses generally evade such responses. Antibody-based immune responses are directed against the glycoprotein spike complexes that decorate the viruses. A thick coat of glycans reduces the accessibility of antibodies to the surface of spike complexes from Old World viruses, but other mechanisms may further hamper the development of efficient humoral responses. Specifically, it was suggested that the GP1 receptor-binding module of the Old World Lassa virus might help with evasion of the humoral response. Here we investigated the immunogenicity of the GP1 domain from Lassa virus and compared it to that of the GP1 domain from the New World Junín virus. We found striking differences in the ability of antibodies that were developed against these immunogens to target the same GP1 receptor-binding domains in the context of the native spike complexes. Whereas GP1 from Junín virus elicited productive neutralizing responses, GP1 from Lassa virus elicited only nonproductive responses. These differences can be rationalized by the conformational changes that GP1 from Lassa virus but not GP1 from Junín virus undergoes after dissociating from the trimeric spike complex. Hence, shedding of GP1 in the case of Lassa virus can indeed serve as a mechanism to subvert the humoral immune response. Moreover, the realization that a recombinant protein may be used to elicit a productive response against the New World Junín virus may suggest a novel and safe way to design future vaccines.IMPORTANCE Some viruses that belong to the Arenaviridae family, like Lassa and Junín viruses, are notorious human pathogens, which may lead to fatal outcomes when they infect people. It is thus important to develop means to combat these viruses. For developing effective vaccines, it is vital to understand the basic mechanisms that these viruses utilize in order to evade or overcome host immune responses. It was previously noted that the GP1 receptor-binding domain from Lassa virus is shed and accumulates in the serum of infected individuals. This raised the possibility that Lassa virus GP1 may function as an immunological decoy. Here we demonstrate that mice develop nonproductive immune responses against GP1 from Lassa virus, which is in contrast to the effective neutralizing responses that GP1 from Junín virus elicits. Thus, GP1 from Lassa virus is indeed an immunological decoy and GP1 from Junín virus may serve as a constituent of a future vaccine.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Viral/immunology , Junin virus/immunology , Lassa virus/immunology , Viral Envelope Proteins/immunology , Animals , Cross Reactions , HEK293 Cells , Humans , Mice , Protein Domains , Species Specificity , Viral Vaccines/immunology
8.
Commun Biol ; 1: 213, 2018.
Article in English | MEDLINE | ID: mdl-30534605

ABSTRACT

Characterization of overexpressed proteins is essential for assessing their quality, and providing input for iterative redesign and optimization. This process is typically carried out following purification procedures that require pronounced cost of time and labor. Therefore, quality assessment of recombinant proteins with no prior purification offers a major advantage. Here, we report a native mass spectrometry method that enables characterization of overproduced proteins directly from culture media. Properties such as solubility, molecular weight, folding, assembly state, overall structure, post-translational modifications and binding to relevant biomolecules are immediately revealed. We show the applicability of the method for in-depth characterization of secreted recombinant proteins from eukaryotic systems such as yeast, insect, and human cells. This method, which can be readily extended to high-throughput analysis, considerably shortens the time gap between protein production and characterization, and is particularly suitable for characterizing engineered and mutated proteins, and optimizing yield and quality of overexpressed proteins.

9.
J Virol ; 90(22): 10329-10338, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27605678

ABSTRACT

To effectively infect cells, Lassa virus needs to switch in an endosomal compartment from its primary receptor, α-dystroglycan, to a protein termed LAMP1. A unique histidine triad on the surface of the receptor-binding domain from the glycoprotein spike complex of Lassa virus is important for LAMP1 binding. Here we investigate mutated spikes that have an impaired ability to interact with LAMP1 and show that although LAMP1 is important for efficient infectivity, it is not required for spike-mediated membrane fusion per se Our studies reveal important regulatory roles for histidines from the triad in sensing acidic pH and preventing premature spike triggering. We further show that LAMP1 requires a positively charged His230 residue to engage with the spike complex and that LAMP1 binding promotes membrane fusion. These results elucidate the molecular role of LAMP1 binding during Lassa virus cell entry and provide new insights into how pH is sensed by the spike. IMPORTANCE: Lassa virus is a devastating disease-causing agent in West Africa, with a significant yearly death toll and severe long-term complications associated with its infection in survivors. In recent years, we learned that Lassa virus needs to switch receptors in a pH-dependent manner to efficiently infect cells, but neither the molecular mechanisms that allow switching nor the actual effects of switching were known. Here we investigate the activity of the viral spike complex after abrogation of its ability to switch receptors. These studies inform us about the role of switching receptors and provide new insights into how the spike senses acidic pH.


Subject(s)
Lassa Fever/metabolism , Lassa Fever/virology , Lassa virus/metabolism , Lysosomal-Associated Membrane Protein 1/metabolism , Protein Binding/physiology , Africa, Western , Animals , Cell Line , Chlorocebus aethiops , Dystroglycans/metabolism , Endosomes/metabolism , Endosomes/virology , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Membrane Fusion/physiology , Receptors, Virus/metabolism , Vero Cells , Viral Envelope Proteins/metabolism , Virus Internalization
10.
Eur J Oncol Nurs ; 19(1): 38-43, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25241930

ABSTRACT

PURPOSE OF THE RESEARCH: The role of the Breast Care Nurse (BCN) is well established in Israel. The purpose of this study is to examine the impact of the BCN on Israeli women with breast cancer at all stages of disease from diagnosis, through treatment and follow-up. METHODS: This was a descriptive multi-center study on 321 women with non-metastatic breast cancer who completed their treatment <5 years before. Data collection took place in seven institutions in Israel, both in hospital and in the community. The women completed two questionnaires: a demographic questionnaire and the Ipswitch Patient Questionnaire looking at various aspects of care. Also included was one qualitative open question. Data analysis was performed checking for outliers and illogical observations. KEY RESULTS: In most areas investigated the women perceived the overall contribution of the BCN as very high, with 87% reporting a general contribution of very high or high. It was found that 53% of the women received information about the position from the nurse herself. In 61.3% of the cases, initial contact with the BCN was made at the time of diagnosis. The qualitative findings concerning the open question are also reported. CONCLUSIONS: According to the perceptions of women with breast cancer in Israel, BCN support is an important part of the patient's ability to manage their diagnosis and related care. The multi-disciplinary breast cancer team should incorporate BCN specialists as part of their holistic care.


Subject(s)
Breast Neoplasms/nursing , Breast Neoplasms/psychology , Nurse's Role , Oncology Nursing , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Female , Health Knowledge, Attitudes, Practice , Humans , Israel , Middle Aged , Patient Satisfaction , Perception , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...