Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(34): 8991-8996, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28784778

ABSTRACT

The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California's Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

2.
Proc Natl Acad Sci U S A ; 100(21): 11975-9, 2003 Oct 14.
Article in English | MEDLINE | ID: mdl-14530403

ABSTRACT

Light alkane hydrocarbons are present in major quantities in the near-surface atmosphere of Texas, Oklahoma, and Kansas during both autumn and spring seasons. In spring 2002, maximum mixing ratios of ethane [34 parts per 109 by volume (ppbv)], propane (20 ppbv), and n-butane (13 ppbv) were observed in north-central Texas. The elevated alkane mixing ratios are attributed to emissions from the oil and natural gas industry. Measured alkyl nitrate mixing ratios were comparable to urban smog values, indicating active photochemistry in the presence of nitrogen oxides, and therefore with abundant formation of tropospheric ozone. We estimate that 4-6 teragrams of methane are released annually within the region and represents a significant fraction of the estimated total U.S. emissions. This result suggests that total U.S. natural gas emissions may have been underestimated. Annual ethane emissions from the study region are estimated to be 0.3-0.5 teragrams.

SELECTION OF CITATIONS
SEARCH DETAIL
...