Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Stroke Res Treat ; 2016: 6941946, 2016.
Article in English | MEDLINE | ID: mdl-26949561

ABSTRACT

Stroke is a leading cause of death and disability. Effects of stroke include significant deficits in sensory-motor skills and cognitive abilities. At present, there are limited effective interventions for postacute stroke patients. In this preliminary research we studied a new noninvasive, very low intensity, low frequency, electromagnetic field treatment (VLIFE), targeting a neural network, on an in vivo stroke rat model. Eighteen rats were divided into three groups: sham (M1) and two treatment groups which were exposed to VLIFE treatment for 4 weeks, one using theta waves (M2) and another using beta waves (M3); all groups were followed up for an additional month. Results indicate that the M2 and M3 treated groups showed recovery of sensorimotor functional deficits, as demonstrated by Modified Neurological Severity Score and forelimb placement tests. Brain MRI imaging results show a decrease in perilesional edema and lateral ventricle widening in the treated groups. Fiber tracts' imaging, following VLIFE treatment, showed a higher white matter integrity compared to control. Histological findings support neural regeneration processes. Our data suggest that VLIFE treatment, targeting a specific functional neural network by frequency rather than location, promotes neuronal plasticity after stroke and, as a result, improves clinical recovery. Further studies will investigate the full potential of the treatment.

2.
Exp Neurol ; 234(2): 417-27, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22285250

ABSTRACT

Huntington's disease (HD) is a hereditary, progressive and ultimately fatal neurodegenerative disorder. Excitotoxicity and reduced availability of neurotrophic factors (NTFs) likely play roles in HD pathogenesis. Recently we developed a protocol that induces adult human bone marrow derived mesenchymal stem cells (MSCs) into becoming NTF secreting cells (NTF(+) cells). Striatal transplantation of such cells represents a promising autologous therapeutic approach whereby NTFs are delivered to damaged areas. Here, the efficacy of NTF(+) cells was evaluated using the quinolinic acid (QA) rat model for excitotoxicity. We show that NTF(+) cells transplanted into rat brains after QA injection survive transplantation (19% after 6 weeks), maintain their NTF secreting phenotype and significantly reduce striatal volume changes associated with QA lesions. Moreover, QA-injected rats treated with NTF(+) cells exhibit improved behavior; namely, perform 80% fewer apomorphine induced rotations than PBS-treated QA-injected rats. Importantly, we found that MSCs derived from HD patients can be induced to become NTF(+) cells and exert efficacious effects similarly to NTF(+) cells derived from healthy donors. To our knowledge, this is the first study to take adult bone marrow derived mesenchymal stem cells from patients with an inherited disease, transplant them into an animal model and evidence therapeutic benefit. Using MRI we demonstrate in vivo that PBS-treated QA-injected striatae exhibit increasing T(2) values over time in lesioned regions, whereas T(2) values decrease in equivalent regions of QA-injected rats treated with NTF(+) cells. We conclude that NTF cellular treatment could serve as a novel therapy for managing HD.


Subject(s)
Corpus Striatum/pathology , Huntington Disease/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Nerve Growth Factors/metabolism , Animals , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Humans , Mesenchymal Stem Cells/pathology , Quinolinic Acid , Rats
3.
Neurology ; 69(23): 2146-54, 2007 Dec 04.
Article in English | MEDLINE | ID: mdl-18056578

ABSTRACT

BACKGROUND: Multiple lines of evidence have suggested that developmental dyslexia may be associated with abnormalities of neuronal migration or axonal connectivity. In patients with periventricular nodular heterotopia--a rare genetic brain malformation characterized by misplaced nodules of gray matter along the lateral ventricles--a specific and unexpected reading disability is present, despite normal intelligence. We sought to investigate the cognitive and structural brain bases of this phenomenon. METHODS: Ten adult subjects with heterotopia, 10 with dyslexia, and 10 normal controls were evaluated, using a battery of neuropsychometric measures. White matter integrity and fiber tract organization were examined in six heterotopia subjects, using diffusion tensor imaging methods. RESULTS: Subjects with heterotopia and those with developmental dyslexia shared a common behavioral profile, with specific deficits in reading fluency. Individuals with dyslexia seemed to have a more prominent phonological impairment than heterotopia subjects. Periventricular nodular heterotopia was associated with specific, focal disruptions in white matter microstructure and organization in the vicinity of gray matter nodules. The degree of white matter integrity correlated with reading fluency in this population. CONCLUSIONS: We demonstrate that a genetic disorder of gray matter heterotopia shares behavioral characteristics with developmental dyslexia, and that focal white matter defects in this disorder may serve as the structural brain basis of this phenomenon. Our findings represent a potential model for the use of developmental brain malformations in the investigation of abnormal cognitive function.


Subject(s)
Brain/abnormalities , Dyslexia/pathology , Malformations of Cortical Development, Group II/pathology , Neural Pathways/abnormalities , Periventricular Nodular Heterotopia/pathology , Adult , Dyslexia/etiology , Female , Humans , Magnetic Resonance Imaging , Male , Malformations of Cortical Development, Group II/complications , Nerve Fibers, Myelinated/pathology , Periventricular Nodular Heterotopia/complications , Reading
SELECTION OF CITATIONS
SEARCH DETAIL
...