Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS Biol ; 6(1): e9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18215112

ABSTRACT

This paper demonstrates a previously unreported property of deoxyribonucleic acid-the ability of dye-labeled, solid-state DNA dried onto a surface to detect odors delivered in the vapor phase by changes in fluorescence. This property is useful for engineering systems to detect volatiles and provides a way for artificial sensors to emulate the way cross-reactive olfactory receptors respond to and encode single odorous compounds and mixtures. Recent studies show that the vertebrate olfactory receptor repertoire arises from an unusually large gene family and that the receptor types that have been tested so far show variable breadths of response. In designing biomimetic artificial noses, the challenge has been to generate a similarly large sensor repertoire that can be manufactured with exact chemical precision and reproducibility and that has the requisite combinatorial complexity to detect odors in the real world. Here we describe an approach for generating and screening large, diverse libraries of defined sensors using single-stranded, fluorescent dye-labeled DNA that has been dried onto a substrate and pulsed with brief exposures to different odors. These new solid-state DNA-based sensors are sensitive and show differential, sequence-dependent responses. Furthermore, we show that large DNA-based sensor libraries can be rapidly screened for odor response diversity using standard high-throughput microarray methods. These observations describe new properties of DNA and provide a generalized approach for producing explicitly tailored sensor arrays that can be rationally chosen for the detection of target volatiles with different chemical structures that include biologically derived odors, toxic chemicals, and explosives.


Subject(s)
DNA/analysis , Fluorescent Dyes/analysis , Gases/analysis , Odorants/analysis , DNA/chemistry , Fluorescent Dyes/chemistry , Oligonucleotide Array Sequence Analysis , Volatilization
2.
J Comp Neurol ; 474(3): 453-67, 2004 Jun 28.
Article in English | MEDLINE | ID: mdl-15174087

ABSTRACT

Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods.


Subject(s)
Ambystoma/metabolism , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/biosynthesis , Ambystoma/genetics , Animals , Gene Expression Regulation/physiology , Olfactory Mucosa/chemistry , Olfactory Receptor Neurons/chemistry , Receptors, Odorant/analysis , Receptors, Odorant/genetics
3.
Nature ; 417(6886): 336-42, 2002 May 16.
Article in English | MEDLINE | ID: mdl-12015614

ABSTRACT

Our sense of smell is based on a remarkable chemical-detection system that possesses high sensitivity, broad discriminability and plastic, yet stable, function. Understanding how olfactory stimuli translate into perception is a problem of daunting complexity. How do odour-coding events in single cells correlate with emergent properties from the ensemble, and with behaviour? For comprehensive descriptions of neural function, analysis must extend from examination of how elemental principles relate to the function of the whole. The tiger salamander has long been used as an experimental model in studies of olfaction, enabling general questions about olfactory function to be approached.


Subject(s)
Olfactory Pathways/physiology , Smell/physiology , Urodela/physiology , Animals , Odorants
4.
Chem Senses ; 27(3): 261-75, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11923188

ABSTRACT

We have designed an approach for modeling olfactory pathways by which one can explore how the properties of individual receptors affect the information coding capacity of an entire system. The effect of receptor tuning breadth on system performance was explored explicitly. We presented model sensory arrays with sets of stimuli randomly and uniformly distributed in an "olfactory space". Arrays of uniformly sized model receptors responding to 25-35% of the stimuli gave the best performance as measured by the ability to capture the most information about the stimulus set. Arrays of variably sized model receptors that were both more broadly and more narrowly tuned than this optimum could, however, perform better than uniform arrays. This method and the results obtained using it suggest a framework for considering the growing body of evidence on the functional properties of individual olfactory receptor and relay neurons from a systems coding perspective.


Subject(s)
Computational Biology , Biosensing Techniques , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL