Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int ; 275: 187-194, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28391114

ABSTRACT

Mutations in the cardiac sodium channel gene SCN5A may result in various arrhythmia syndromes such as long QT syndrome type 3 (LQTS), Brugada syndrome (BrS), sick sinus syndrome (SSS), cardiac conduction diseases (CCD) and possibly dilated cardiomyopathy (DCM). In most of these inherited cardiac arrhythmia syndromes the phenotypical expression may range from asymptomatic phenotypes to sudden cardiac death (SCD). A 16-year-old female died during sleep. Autopsy did not reveal any explanation for her death and a genetic analysis was performed. A variant in the SCN5A gene (E1053K) that was previously described as disease causing was detected. Family members are carriers of the same E1053K variant, some even in a homozygous state, but surprisingly did not exhibit any pathological cardiac phenotype. Due to the lack of genotype-phenotype correlation further genetic studies were performed. A novel deletion in the promoter region of SCN5A was identified in the sudden death victim but was absent in other family members. These findings demonstrate the difficulties in interpreting the results of a family-based genetic screening and underline the phenotypic variability of SCN5A mutations.


Subject(s)
Death, Sudden, Cardiac/etiology , Gene Deletion , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , Adolescent , Female , Genetic Carrier Screening , Genotype , Humans , Pedigree , Phenotype , Promoter Regions, Genetic , Real-Time Polymerase Chain Reaction
2.
Mol Phylogenet Evol ; 78: 290-303, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24878223

ABSTRACT

We present a large-scale molecular phylogeny that includes 320 of the 761 recognized valid species of the cone snails (Conus), one of the most diverse groups of marine molluscs, based on three mitochondrial genes (COI, 16S rDNA and 12S rDNA). This is the first phylogeny of the taxon to employ concatenated sequences of several genes, and it includes more than twice as many species as the last published molecular phylogeny of the entire group nearly a decade ago. Most of the numerous molecular phylogenies published during the last 15years are limited to rather small fractions of its species diversity. Bayesian and maximum likelihood analyses are mostly congruent and confirm the presence of three previously reported highly divergent lineages among cone snails, and one identified here using molecular data. About 85% of the species cluster in the single Large Major Clade; the others are divided between the Small Major Clade (∼12%), the Conus californicus lineage (one species), and a newly defined clade (∼3%). We also define several subclades within the Large and Small major clades, but most of their relationships remain poorly supported. To illustrate the usefulness of molecular phylogenies in addressing specific evolutionary questions, we analyse the evolution of the diet, the biogeography and the toxins of cone snails. All cone snails whose feeding biology is known inject venom into large prey animals and swallow them whole. Predation on polychaete worms is inferred as the ancestral state, and diet shifts to molluscs and fishes occurred rarely. The ancestor of cone snails probably originated from the Indo-Pacific; rather few colonisations of other biogeographic provinces have probably occurred. A new classification of the Conidae, based on the molecular phylogeny, is published in an accompanying paper.


Subject(s)
Conus Snail/classification , Phylogeny , Animals , Bayes Theorem , Conus Snail/genetics , Evolution, Molecular , Genes, Mitochondrial , Phylogeography
3.
Toxicon ; 54(3): 295-301, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19393680

ABSTRACT

The venom of cone snails (Conus spp.) is a rich source of peptides exhibiting a wide variety of biological activities. Several of these conopeptides are neuronal nicotinic acetylcholine receptor (nAChR) antagonists and belong to the A-, M-, S-, C and the recently described D-superfamily (alphaD-conopeptides). Here we describe the discovery and characterization of two alphaD-conopeptides isolated from the venom of Conus mustelinus and Conus capitaneus. Their primary structure was determined by Edman degradation, MS/MS analysis and by a PCR based approach. These peptides show close structural homology to the alphaD-VxXIIA, -B and -C conopeptides from the venom of Conus vexillum and are dimers (about 11kDa) of similar or identical peptides with 49 amino acid residues and a characteristic arrangement of ten conserved cysteine residues. These novel types of conopeptides specifically block neuronal nAChRs of the alpha7, alpha3beta2 and alpha4beta2 subtypes in nanomolar concentrations. Due to their high affinity, these new ligands may provide a tool to decipher the localisation and function of the various neuronal nAChRs.


Subject(s)
Conotoxins/chemistry , Neurons/drug effects , Nicotinic Antagonists/pharmacology , Peptides/pharmacology , Receptors, Nicotinic/drug effects , Amino Acid Sequence , Animals , Base Sequence , Chromatography, Liquid , DNA Primers , Molecular Sequence Data , Mollusk Venoms/chemistry , Neurons/metabolism , Nicotinic Antagonists/isolation & purification , Peptides/chemistry , Peptides/isolation & purification , Sequence Homology, Amino Acid , Spectrometry, Mass, Electrospray Ionization , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...