Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
JACS Au ; 4(5): 1928-1934, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818069

ABSTRACT

An Au36(S-tBu)22 nanocluster (NC) is synthesized using the bulky tert-butyl thiol as the ligand. Single-crystal X-ray crystallography reveals that it has an Au25 core which evolves from the Au22 core in the previously reported Au30(S-tBu)18, and the Au25 core is protected by longer staple-like surface motifs. The new Au36 NC extends the members of the face-centered cubic structural evolution by adding an Au3 triangle and an Au4 tetrahedron unit. Additionally, it is found that Au36 emits near-infrared photoluminescence at 863 nm with a quantum yield (QY) of 4.3%, which is five times larger than that of Au30(S-tBu)18-the closest neighbor in the structural evolution pattern. The higher QY of Au36 is attributed to a larger radiative relaxation (kr), resulting from the structural effect. Finally, we find that the longer staple motifs lead to enhanced stability of Au36(S-tBu)22 relative to Au30(S-tBu)18.

2.
Angew Chem Int Ed Engl ; 61(47): e202211771, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36283972

ABSTRACT

This work investigates the critical factors impacting electrochemical CO2 reduction reaction (CO2 RR) using atomically precise Au nanoclusters (NCs) as electrocatalysts. First, the influence of size on CO2 RR is studied by precisely controlling NC size in the 1-2.5 nm regime. We find that the electrocatalytic CO partial current density increases for smaller NCs, but the CO Faradaic efficiency (FE) is not directly associated with the NC size. This indicates that the surface-to-volume ratio, i.e. the population of active sites, is the dominant factor for determining the catalytic activity, but the selectivity is not directly impacted by size. Second, we compare the CO2 RR performance of Au38 isomers (Au38 Q and Au38 T) to reveal that structural rearrangement of identical size NCs can lead to significant changes in both CO2 RR activity and selectivity. Au38 Q shows higher activity and selectivity towards CO than Au38 T, and density functional theory (DFT) calculations reveal that the average formation energy of the key *COOH intermediate on the proposed active sites is significantly lower on Au38 Q than Au38 T. These results demonstrate how the structural isomerism can impact stabilization of reaction intermediates as well as the overall CO2 RR performance of identical size Au NCs. Overall, this work provides important structure-property relationships for tailoring the NCs for CO2 RR.

3.
Sci Rep ; 12(1): 8420, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35589777

ABSTRACT

In this study, we demonstrate three-dimensional (3D) hollow nanosphere electrocatalysts for CO2 conversion into formate with excellent H-Cell performance and industrially-relevant current density in a 25 cm2 membrane electrode assembly electrolyzer device. Varying calcination temperature maximized formate production via optimizing the crystallinity and particle size of the constituent SnO2 nanoparticles. The best performing SnO2 nanosphere catalysts contained ~ 7.5 nm nanocrystals and produced 71-81% formate Faradaic efficiency (FE) between -0.9 V and -1.3 V vs. the reversible hydrogen electrode (RHE) at a maximum formate partial current density of 73 ± 2 mA cmgeo-2 at -1.3 V vs. RHE. The higher performance of nanosphere catalysts over SnO2 nanoparticles and commercially-available catalyst could be ascribed to their initial structure providing higher electrochemical surface area and preventing extensive nanocrystal growth during CO2 reduction. Our results are among the highest performance reported for SnO2 electrocatalysts in aqueous H-cells. We observed an average 68 ± 8% FE over 35 h of operation with multiple on/off cycles. In situ Raman and time-dependent X-ray diffraction measurements identified metallic Sn as electrocatalytic active sites during long-term operation. Further evaluation in a 25 cm2 electrolyzer cell demonstrated impressive performance with a sustained current density of 500 mA cmgeo-2 and an average 75 ± 6% formate FE over 24 h of operation. Our results provide additional design concepts for boosting the performance of formate-producing catalysts.

4.
Nanoscale ; 13(4): 2333-2337, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33464267

ABSTRACT

Ligand effects are of major interest in catalytic reactions owing to their potential critical role in determining the reaction activity and selectivity. Herein, we report ligand effects in the CO2 electrochemical reduction reaction at the atomic level with three unique Au25 nanoclusters comprising the same kernel but different protecting ligands (-XR, where X = S or Se, and R represents the carbon tail). It is observed that a change in the carbon tail shows no obvious impact on the catalytic selectivity and activity, but the anchoring atom (X = S or Se) strongly affects the electrocatalytic selectivity. Specifically, the S site acts as the active site and sustains CO selectivity, while the Se site shows a higher tendency of hydrogen evolution. Density functional theory (DFT) calculations reveal that the energy penalty associated with the *COOH formation is lower on the S site by 0.26 eV compared to that on the Se site. Additionally, the formation energy of the product (*CO) is lower on the sulfur-based Au nanocluster by 0.43 eV. We attribute these energetic differences to the higher electron density on the sulfur sites of the Au nanocluster, resulting in a modified bonding character of the reaction intermediates that reduce the energetic penalty for the *COOH and *CO formation. Overall, this work demonstrates that S/Se atoms at the metal-ligand interface can play an important role in determining the overall electrocatalytic performance of Au nanoclusters.

5.
Angew Chem Int Ed Engl ; 60(12): 6351-6356, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33350026

ABSTRACT

Thiolate-protected gold nanoclusters (NCs) are promising catalytic materials for the electrochemical CO2 reduction reaction (CO2 RR). In this work an atomic level modification of a Au23 NC is made by substituting two surface Au atoms with two Cd atoms, and it enhances the CO2 RR selectivity to 90-95 % at the applied potential between -0.5 to -0.9 V, which is doubled compared to that of the undoped Au23 . Additionally, the Cd-doped Au19 Cd2 exhibits the highest CO2 RR activity (2200 mA mg-1 at -1.0 V vs. RHE) among the reported NCs. This synergetic effect between Au and Cd is remarkable. Density-functional theory calculations reveal that the exposure of a sulfur active site upon partial ligand removal provides an energetically feasible CO2 RR pathway. The thermodynamic energy barrier for CO formation is 0.74 eV lower on Au19 Cd2 than on Au23 . These results reveal that Cd doping can boost the CO2 RR performance of Au NCs by modifying the surface geometry and electronic structure, which further changes the intermediate binding energy. This work offers insights into the surface doping mechanism of the CO2 RR and bimetallic synergism.

6.
J Am Chem Soc ; 141(13): 5314-5325, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30860834

ABSTRACT

The origin of the near-infrared photoluminescence (PL) from thiolate-protected gold nanoclusters (Au NCs, <2 nm) has long been controversial, and the exact mechanism for the enhancement of quantum yield (QY) in many works remains elusive. Meanwhile, based upon the sole steady-state PL analysis, it is still a major challenge for researchers to map out a definitive relationship between the atomic structure and the PL property and understand how the Au(0) kernel and Au(I)-S surface contribute to the PL of Au NCs. Herein, we provide a paradigm study to address the above critical issues. By using a correlated series of "mono-cuboctahedral kernel" Au NCs and combined analyses of steady-state, temperature-dependence, femtosecond transient absorption, and Stark spectroscopy measurements, we have explicitly mapped out a kernel-origin mechanism and clearly elucidate the surface-structure effect, which establishes a definitive atomic-level structure-emission relationship. A ∼100-fold enhancement of QY is realized via suppression of two effects: (i) the ultrafast kernel relaxation and (ii) the surface vibrations. The new insights into the PL origin, QY enhancement, wavelength tunability, and structure-property relationship constitute a major step toward the fundamental understanding and structural-tailoring-based modulation and enhancement of PL from Au NCs.


Subject(s)
Gold/chemistry , Luminescence , Metal Nanoparticles/chemistry , Molecular Structure , Photochemical Processes , Quantum Theory
7.
ACS Appl Mater Interfaces ; 7(28): 15626-32, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26121278

ABSTRACT

The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.

8.
Nano Lett ; 15(5): 3603-9, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25915164

ABSTRACT

Toward controlling the magic sizes of atomically precise gold nanoclusters, herein we have devised a new strategy by exploring the para-, meta-, ortho-methylbenzenethiol (MBT) for successful preparation of pure Au130(p-MBT)50, Au104(m-MBT)41 and Au40(o-MBT)24 nanoclusters. The decreasing size sequence is in line with the increasing hindrance of the methyl group to the interfacial Au-S bond. That the subtle change of ligand structure can result in drastically different magic sizes under otherwise similar reaction conditions is indeed for the first time observed in the synthesis of thiolate-protected gold nanoclusters. These nanoclusters are highly stable as they are synthesized under harsh size-focusing conditions at 80-90 °C in the presence of excess thiol and air (i.e., without exclusion of oxygen).

9.
J Colloid Interface Sci ; 423: 123-8, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24703677

ABSTRACT

We report the synthesis of ligand-protected, ultrasmall Pt nanoparticles of ∼1 nm size via a one-phase wet chemical method. Using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), we determined the mass of the nanoparticles to be ∼8 kDa. Characterization of the Pt nanoparticles was further carried out by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), optical absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). Interestingly, we observed a large structural relaxation in the 8kDa nanoparticles (i.e. lattice parameter elongation by +10%) compared to bulk platinum. XPS analysis revealed a positive shift of Pt 4f core level energy by approximately +1 eV compared with bulk Pt, indicating charge transfer from Pt to S atom of the thiolate ligand on the particle. Compared to bulk Pt, the 5d band of Pt nanoparticles is narrower and shifts to higher binding energy. Overall, the ∼1 nm ultrasmall Pt nanoparticles exhibit quite distinct differences in electronic and structural properties compared to their larger counterparts and bulk Pt.

10.
J Phys Chem Lett ; 4(1): 195-202, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-26291231

ABSTRACT

The anionic charge of atomically precise Au25(SC2H4Ph)18(-) nanoclusters (abbreviated as Au25(-)) is thought to facilitate the adsorption and activation of molecular species. We used optical spectroscopy, nonaqueous electrochemistry, and density functional theory to study the interaction between Au25(-) and O2. Surprisingly, the oxidation of Au25(-) by O2 was not a spontaneous process. Rather, Au25(-)-O2 charge transfer was found to be a photomediated process dependent on the relative energies of the Au25(-) LUMO and the O2 electron-accepting level. Photomediated charge transfer was not restricted to one particular electron accepting molecule or solvent system, and this phenomenon likely extends to other Au25(-)-adsorbate systems with appropriate electron donor-acceptor energy levels. These findings underscore the significant and sometimes overlooked way that photophysical processes can influence the chemistry of ligand-protected clusters. In a broader sense, the identification of photochemical pathways may help develop new cluster-adsorbate models and expand the range of catalytic reactions available to these materials.

11.
J Am Chem Soc ; 134(24): 10237-43, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22616945

ABSTRACT

Atomically precise, inherently charged Au(25) clusters are an exciting prospect for promoting catalytically challenging reactions, and we have studied the interaction between CO(2) and Au(25). Experimental results indicate a reversible Au(25)-CO(2) interaction that produced spectroscopic and electrochemical changes similar to those seen with cluster oxidation. Density functional theory (DFT) modeling indicates these changes stem from a CO(2)-induced redistribution of charge within the cluster. Identification of this spontaneous coupling led to the application of Au(25) as a catalyst for the electrochemical reduction of CO(2) in aqueous media. Au(25) promoted the CO(2) → CO reaction within 90 mV of the formal potential (thermodynamic limit), representing an approximate 200-300 mV improvement over larger Au nanoparticles and bulk Au. Peak CO(2) conversion occurred at -1 V (vs RHE) with approximately 100% efficiency and a rate 7-700 times higher than that for larger Au catalysts and 10-100 times higher than those for current state-of-the-art processes.

12.
Analyst ; 135(11): 2790-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20733998

ABSTRACT

Graphene, an atomically thin layer of sp(2) hybridized carbon, has emerged as a promising new nanomaterial for a variety of exciting applications including chemical sensors and catalyst supports. In this article, we survey modern methods of graphene production and functionalization with an emphasis on the development of chemical sensors and fuel cell electrodes with brief comparisons to state-of-the-art carbon nanotube-based systems.


Subject(s)
Electric Power Supplies , Graphite/chemistry , Nanotubes, Carbon/chemistry , Catalysis , Electrodes , Particle Size , Surface Properties
13.
Nano Lett ; 10(3): 958-63, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-20155969

ABSTRACT

We have explored the room temperature response of metal nanoparticle decorated single-walled carbon nanotubes (NP-SWNTs) using a combination of electrical transport, optical spectroscopy, and electronic structure calculations. We have found that upon the electrochemical growth of Au NPs on SWNTs, there is a transfer of electron density from the SWNT to the NP species, and that adsorption of CO molecules on the NP surface is accompanied by transfer of electronic density back into the SWNT. Moreover, the electronic structure calculations indicate dramatic variations in the charge density at the NP-SWNT interface, which supports our previous observation that interfacial potential barriers dominate the electrical behavior of NP-SWNT systems.


Subject(s)
Conductometry/instrumentation , Gold/chemistry , Models, Theoretical , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Transducers , Computer Simulation , Crystallization/methods , Equipment Design , Equipment Failure Analysis , Materials Testing , Nanotubes, Carbon/ultrastructure , Particle Size
14.
J Am Chem Soc ; 131(37): 13200-1, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19722487

ABSTRACT

The electrochemical activity of stacked nitrogen-doped carbon nanotube cups (NCNCs) has been explored in comparison to commercial Pt-decorated carbon nanotubes. The nanocup catalyst has demonstrated comparable performance to that of Pt catalyst in oxygen reduction reaction. In addition to effectively catalyzing O(2) reduction, the NCNC electrodes have been used for H(2)O(2) oxidation and consequently for glucose detection when NCNCs were functionalized with glucose oxidase (GOx). Creating the catalysts entirely free of precious metals is of great importance for low-cost fuel cells and biosensors.

15.
Nat Chem ; 1(6): 500-6, 2009 Sep.
Article in English | MEDLINE | ID: mdl-21378918

ABSTRACT

The relatively simple and robust architecture of microelectronic devices based on carbon nanotubes, in conjunction with their environmental sensitivity, places them among the leading candidates for incorporation into ultraportable or wearable chemical analysis platforms. We used single-walled carbon nanotube (SWNT) networks to establish a mechanistic understanding of the solid-state oxygen sensitivity of a Eu(3+)-containing dendrimer complex. After illumination with 365 nm light, the SWNT networks decorated with the Eu(3+) dendrimer show bimodal (optical spectroscopic and electrical conductance) sensitivity towards oxygen gas at room temperature under ambient pressure. We investigated the mechanism of this unique oxygen sensitivity with time-resolved and steady-state optical spectroscopy, analysis of excited-state luminescence lifetimes and solid-state electrical transport measurements. We demonstrate a potential application of this system by showing a reversible and linear electrical response to oxygen gas in the tested range (5-27%).


Subject(s)
Nanotubes, Carbon/chemistry , Oxygen/analysis , Dendrimers/chemistry , Europium/chemistry , Molecular Structure , Organometallic Compounds/chemistry , Particle Size , Surface Properties
16.
Angew Chem Int Ed Engl ; 47(35): 6550-70, 2008.
Article in English | MEDLINE | ID: mdl-18642264

ABSTRACT

Carbon nanotubes have aroused great interest since their discovery in 1991. Because of the vast potential of these materials, researchers from diverse disciplines have come together to further develop our understanding of the fundamental properties governing their electronic structure and susceptibility towards chemical reaction. Carbon nanotubes show extreme sensitivity towards changes in their local chemical environment that stems from the susceptibility of their electronic structure to interacting molecules. This chemical sensitivity has made them ideal candidates for incorporation into the design of chemical sensors. Towards this end, carbon nanotubes have made impressive strides in sensitivity and chemical selectivity to a diverse array of chemical species. Despite the lengthy list of accomplishments, several key challenges must be addressed before carbon nanotubes are capable of competing with state-of-the-art solid-state sensor materials. The development of carbon nanotube based sensors is still in its infancy, but continued progress may lead to their integration into commercially viable sensors of unrivalled sensitivity and vanishingly small dimensions.

17.
Chem Soc Rev ; 37(6): 1197-206, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18497932

ABSTRACT

The year 2008 marks the 10th anniversary of the carbon nanotube field-effect transistor (NTFET). In the past decade a vast amount of effort has been placed on the development of NTFET based sensors for the detection of both chemical and biological species. Towards this end, NTFETs show great promise because of their extreme environmental sensitivity, small size, and ultra-low power requirements. Despite the great progress NTFETs have shown in the field of biological sensing, debate still exists over the mechanistic origins underlying the electronic response of NTFET devices, specifically whether analyte species interact with the carbon nanotube conduction channel or if interaction with the NTFET electrodes actually triggers device response. In this tutorial review, we describe the fabrication of NTFET devices, and detail several reports that illustrate recent advances in biological detection using NTFET devices, while highlighting the suggested mechanisms explaining the device response to analyte species. In doing this we hope to show that NTFET technology has the potential for low-cost and portable bioanalytical platforms.


Subject(s)
DNA/analysis , Nanotubes, Carbon/chemistry , Proteins/analysis , Electrons , Transistors, Electronic/economics , Transistors, Electronic/trends
18.
Small ; 3(8): 1324-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17603820

ABSTRACT

Spectroscopic and electronic field-effect transistor measurements reveal complimentary information about molecular interactions with single-walled carbon nanotubes (SWNTs). Here we demonstrate how these two complimentary techniques can be combined to further understand electronic modifications of the SWNTs. The complimentary nature of these techniques stems from the perturbation of the electronic structure of SWNTs upon electronic interaction with an electron-donating, or -accepting species.


Subject(s)
Materials Testing/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Spectrum Analysis/methods , Transistors, Electronic , Macromolecular Substances/chemistry , Molecular Conformation , Particle Size , Surface Properties , Systems Integration
19.
Nano Lett ; 7(7): 1863-8, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17547464

ABSTRACT

Single-walled carbon nanotube (SWNT) field effect transistors were electrochemically decorated with Pt, Pd, Au, and Ag nanoparticles. Upon exposure to 10 ppm NO gas in N2 a trend was found wherein the magnitude of electron transfer into the SWNT valence band scaled with the work function of the individual metal. This trend gives experimental support for the formation of a metal work function dependent potential barrier at the SWNT--nanoparticle interface.


Subject(s)
Metal Nanoparticles/chemistry , Nanotechnology , Nanotubes, Carbon/chemistry , Transistors, Electronic
SELECTION OF CITATIONS
SEARCH DETAIL
...