Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
BMC Cancer ; 22(1): 675, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35725412

ABSTRACT

BACKGROUND: Somatic alterations in the cancer genome, some of which are associated with changes in gene expression, have been characterized in multiple studies across diverse cancer types. However, less is known about germline variants that influence tumor biology by shaping the cancer transcriptome. METHODS: We performed expression quantitative trait loci (eQTL) analyses using multi-dimensional data from The Cancer Genome Atlas to explore the role of germline variation in mediating the cancer transcriptome. After accounting for associations between somatic alterations and gene expression, we determined the contribution of inherited variants to the cancer transcriptome relative to that of somatic variants. Finally, we performed an interaction analysis using estimates of tumor cellularity to identify cell type-restricted eQTLs. RESULTS: The proportion of genes with at least one eQTL varied between cancer types, ranging between 0.8% in melanoma to 28.5% in thyroid cancer and was correlated more strongly with intratumor heterogeneity than with somatic alteration rates. Although contributions to variance in gene expression was low for most genes, some eQTLs accounted for more than 30% of expression of proximal genes. We identified cell type-restricted eQTLs in genes known to be cancer drivers including LPP and EZH2 that were associated with disease-specific mortality in TCGA but not associated with disease risk in published GWAS. Together, our results highlight the need to consider germline variation in interpreting cancer biology beyond risk prediction.


Subject(s)
Genome-Wide Association Study , Melanoma , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide , Transcriptome
2.
Mol Cancer Res ; 20(3): 361-372, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34799403

ABSTRACT

Various subunits of mammalian SWI/SNF chromatin remodeling complexes display loss-of-function mutations characteristic of tumor suppressors in different cancers, but an additional role for SWI/SNF supporting cell survival in distinct cancer contexts is emerging. In particular, genetic dependence on the catalytic subunit BRG1/SMARCA4 has been observed in acute myelogenous leukemia (AML), yet the feasibility of direct therapeutic targeting of SWI/SNF catalytic activity in leukemia remains unknown. Here, we evaluated the activity of dual BRG1/BRM ATPase inhibitors across a genetically diverse panel of cancer cell lines and observed that hematopoietic cancer cell lines were among the most sensitive compared with other lineages. This result was striking in comparison with data from pooled short hairpin RNA screens, which showed that only a subset of leukemia cell lines display sensitivity to BRG1 knockdown. We demonstrate that combined genetic knockdown of BRG1 and BRM is required to recapitulate the effects of dual inhibitors, suggesting that SWI/SNF dependency in human leukemia extends beyond a predominantly BRG1-driven mechanism. Through gene expression and chromatin accessibility studies, we show that the dual inhibitors act at genomic loci associated with oncogenic transcription factors, and observe a downregulation of leukemic pathway genes, including MYC, a well-established target of BRG1 activity in AML. Overall, small-molecule inhibition of BRG1/BRM induced common transcriptional responses across leukemia models resulting in a spectrum of cellular phenotypes. IMPLICATIONS: Our studies reveal the breadth of SWI/SNF dependency in leukemia and support targeting SWI/SNF catalytic function as a potential therapeutic strategy in AML.


Subject(s)
Adenosine Triphosphatases , Leukemia, Myeloid, Acute , Adenosine Triphosphatases/genetics , Animals , Carcinogenesis , Chromatin Assembly and Disassembly , DNA Helicases/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mammals/genetics , Mammals/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Bioinformatics ; 37(23): 4548-4555, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34240099

ABSTRACT

MOTIVATION: The identification and discovery of phenotypes from high content screening images is a challenging task. Earlier works use image analysis pipelines to extract biological features, supervised training methods or generate features with neural networks pretrained on non-cellular images. We introduce a novel unsupervised deep learning algorithm to cluster cellular images with similar Mode-of-Action (MOA) together using only the images' pixel intensity values as input. It corrects for batch effect during training. Importantly, our method does not require the extraction of cell candidates and works from the entire images directly. RESULTS: The method achieves competitive results on the labeled subset of the BBBC021 dataset with an accuracy of 97.09% for correctly classifying the MOA by nearest neighbors matching. Importantly, we can train our approach on unannotated datasets. Therefore, our method can discover novel MOAs and annotate unlabeled compounds. The ability to train end-to-end on the full resolution images makes our method easy to apply and allows it to further distinguish treatments by their effect on proliferation. AVAILABILITY AND IMPLEMENTATION: Our code is available at https://github.com/Novartis/UMM-Discovery. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Cluster Analysis
4.
Sci Adv ; 7(27)2021 07.
Article in English | MEDLINE | ID: mdl-34215580

ABSTRACT

Millions of putative transcriptional regulatory elements (TREs) have been cataloged in the human genome, yet their functional relevance in specific pathophysiological settings remains to be determined. This is critical to understand how oncogenic transcription factors (TFs) engage specific TREs to impose transcriptional programs underlying malignant phenotypes. Here, we combine cutting edge CRISPR screens and epigenomic profiling to functionally survey ≈15,000 TREs engaged by estrogen receptor (ER). We show that ER exerts its oncogenic role in breast cancer by engaging TREs enriched in GATA3, TFAP2C, and H3K27Ac signal. These TREs control critical downstream TFs, among which TFAP2C plays an essential role in ER-driven cell proliferation. Together, our work reveals novel insights into a critical oncogenic transcription program and provides a framework to map regulatory networks, enabling to dissect the function of the noncoding genome of cancer cells.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Regulatory Networks , Carcinogenesis/genetics , Epigenomics , Genome, Human , Humans , Regulatory Elements, Transcriptional
6.
Mol Cancer Ther ; 19(10): 2186-2195, 2020 10.
Article in English | MEDLINE | ID: mdl-32747420

ABSTRACT

Uveal melanoma is a rare and aggressive cancer that originates in the eye. Currently, there are no approved targeted therapies and very few effective treatments for this cancer. Although activating mutations in the G protein alpha subunits, GNAQ and GNA11, are key genetic drivers of the disease, few additional drug targets have been identified. Recently, studies have identified context-specific roles for the mammalian SWI/SNF chromatin remodeling complexes (also known as BAF/PBAF) in various cancer lineages. Here, we find evidence that the SWI/SNF complex is essential through analysis of functional genomics screens and further validation in a panel of uveal melanoma cell lines using both genetic tools and small-molecule inhibitors of SWI/SNF. In addition, we describe a functional relationship between the SWI/SNF complex and the melanocyte lineage-specific transcription factor Microphthalmia-associated Transcription Factor, suggesting that these two factors cooperate to drive a transcriptional program essential for uveal melanoma cell survival. These studies highlight a critical role for SWI/SNF in uveal melanoma, and demonstrate a novel path toward the treatment of this cancer.


Subject(s)
Chromatin/metabolism , Melanoma/genetics , Uveal Neoplasms/genetics , Animals , Cell Line, Tumor , Chromosomal Proteins, Non-Histone , Humans , Mice , Transcription Factors
7.
Comput Struct Biotechnol J ; 18: 323-331, 2020.
Article in English | MEDLINE | ID: mdl-32099592

ABSTRACT

Genetic heterogeneity within a tumor arises by clonal evolution, and patients with highly heterogeneous tumors are more likely to be resistant to therapy and have reduced survival. Clonal evolution also occurs when a subset of cells leave the primary tumor to form metastases, which leads to reduced genetic heterogeneity at the metastatic site. Although this process has been observed in human cancer, experimental models which recapitulate this process are lacking. Patient-derived tumor xenografts (PDX) have been shown to recapitulate the patient's original tumor's intra-tumor genetic heterogeneity, as well as its genomics and response to treatment, but whether they can be used to model clonal evolution in the metastatic process is currently unknown. Here, we address this question by following genetic changes in two breast cancer PDX models during metastasis. First, we discovered that mouse stroma can be a confounding factor in assessing intra-tumor heterogeneity by whole exome sequencing, thus we developed a new bioinformatic approach to correct for this. Finally, in a spontaneous, but not experimental (tail-vein) metastasis model we observed a loss of heterogeneity in PDX metastases compared to their orthotopic "primary" tumors, confirming that PDX models can faithfully mimic the clonal evolution process undergone in human patients during metastatic spreading.

8.
Nat Commun ; 10(1): 3739, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31431624

ABSTRACT

Transcription factor networks shape the gene expression programs responsible for normal cell identity and pathogenic state. Using Core Regulatory Circuitry analysis (CRC), we identify PAX8 as a candidate oncogene in Renal Cell Carcinoma (RCC) cells. Validation of large-scale functional genomic screens confirms that PAX8 silencing leads to decreased proliferation of RCC cell lines. Epigenomic analyses of PAX8-dependent cistrome demonstrate that PAX8 largely occupies active enhancer elements controlling genes involved in various metabolic pathways. We selected the ferroxidase Ceruloplasmin (CP) as an exemplary gene to dissect PAX8 molecular functions. PAX8 recruits histone acetylation activity at bound enhancers looping onto the CP promoter. Importantly, CP expression correlates with sensitivity to PAX8 silencing and identifies a subset of RCC cases with poor survival. Our data identifies PAX8 as a candidate oncogene in RCC and provides a potential biomarker to monitor its activity.


Subject(s)
Carcinoma, Renal Cell/genetics , Ceruloplasmin/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Kidney Neoplasms/genetics , PAX8 Transcription Factor/genetics , Acetylation , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Ceruloplasmin/metabolism , Histones/metabolism , Humans , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Small Interfering/genetics
9.
Mol Cancer Ther ; 18(12): 2194-2206, 2019 12.
Article in English | MEDLINE | ID: mdl-31409633

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and it is the third leading cause of cancer-related deaths worldwide. Recently, aberrant signaling through the FGF19/FGFR4 axis has been implicated in HCC. Here, we describe the development of FGF401, a highly potent and selective, first in class, reversible-covalent small-molecule inhibitor of the kinase activity of FGFR4. FGF401 is exquisitely selective for FGFR4 versus the other FGFR paralogues FGFR1, FGFR2, FGFR3, and all other kinases in the kinome. FGF401 has excellent drug-like properties showing a robust pharmacokinetic/pharmacodynamics/efficacy relationship, driven by a fraction of time above the phospho-FGFR4 IC90 value. FGF401 has remarkable antitumor activity in mice bearing HCC tumor xenografts and patient-derived xenograft models that are positive for FGF19, FGFR4, and KLB. FGF401 is the first FGFR4 inhibitor to enter clinical trials, and a phase I/II study is currently ongoing in HCC and other solid malignancies.


Subject(s)
Fibroblast Growth Factors/genetics , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Animals , Humans , Liver Neoplasms/pathology , Mice , Mice, Nude , Signal Transduction
10.
Nature ; 569(7757): 503-508, 2019 05.
Article in English | MEDLINE | ID: mdl-31068700

ABSTRACT

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.


Subject(s)
Cell Line, Tumor , Neoplasms/genetics , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , DNA Methylation , Drug Resistance, Neoplasm , Ethnicity/genetics , Gene Editing , Histones/metabolism , Humans , MicroRNAs/genetics , Molecular Targeted Therapy , Neoplasms/metabolism , Protein Array Analysis , RNA Splicing
11.
Cancer Res ; 78(21): 6257-6267, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30135191

ABSTRACT

Activation of p53 by inhibitors of the p53-MDM2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. Here, we report distinct mechanisms by which the novel, potent, and selective inhibitor of the p53-MDM2 interaction HDM201 elicits therapeutic efficacy when applied at various doses and schedules. Continuous exposure of HDM201 led to induction of p21 and delayed accumulation of apoptotic cells. By comparison, high-dose pulses of HDM201 were associated with marked induction of PUMA and a rapid onset of apoptosis. shRNA screens identified PUMA as a mediator of the p53 response specifically in the pulsed regimen. Consistent with this, the single high-dose HDM201 regimen resulted in rapid and marked induction of PUMA expression and apoptosis together with downregulation of Bcl-xL in vivo Knockdown of Bcl-xL was identified as the top sensitizer to HDM201 in vitro, and Bcl-xL was enriched in relapsing tumors from mice treated with intermittent high doses of HDM201. These findings define a regimen-dependent mechanism by which disruption of MDM2-p53 elicits therapeutic efficacy when given with infrequent dosing. In an ongoing HDM201 trial, the observed exposure-response relationship indicates that the molecular mechanism elicited by pulse dosing is likely reproducible in patients. These data support the clinical comparison of daily and intermittent regimens of p53-MDM2 inhibitors.Significance: Pulsed high doses versus sustained low doses of the p53-MDM2 inhibitor HDM201 elicit a proapoptotic response from wild-type p53 cancer cells, offering guidance to current clinical trials with this and other drugs that exploit the activity of p53. Cancer Res; 78(21); 6257-67. ©2018 AACR.


Subject(s)
Antineoplastic Agents/administration & dosage , Imidazoles/administration & dosage , Neoplasms/drug therapy , Neoplasms/metabolism , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Area Under Curve , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Drug Screening Assays, Antitumor , Humans , Imidazoles/pharmacology , Kaplan-Meier Estimate , Maximum Tolerated Dose , Mice , Neoplasm Transplantation , Pyrimidines/pharmacology , Pyrroles/pharmacology , RNA, Small Interfering/metabolism , Time Factors , bcl-X Protein/metabolism
12.
PLoS Comput Biol ; 14(7): e1006279, 2018 07.
Article in English | MEDLINE | ID: mdl-30024886

ABSTRACT

Cell autonomous cancer dependencies are now routinely identified using CRISPR loss-of-function viability screens. However, a bias exists that makes it difficult to assess the true essentiality of genes located in amplicons, since the entire amplified region can exhibit lethal scores. These false-positive hits can either be discarded from further analysis, which in cancer models can represent a significant number of hits, or methods can be developed to rescue the true-positives within amplified regions. We propose two methods to rescue true positive hits in amplified regions by correcting for this copy number artefact. The Local Drop Out (LDO) method uses the relative lethality scores within genomic regions to assess true essentiality and does not require additional orthogonal data (e.g. copy number value). LDO is meant to be used in screens covering a dense region of the genome (e.g. a whole chromosome or the whole genome). The General Additive Model (GAM) method models the screening data as a function of the known copy number values and removes the systematic effect from the measured lethality. GAM does not require the same density as LDO, but does require prior knowledge of the copy number values. Both methods have been developed with single sample experiments in mind so that the correction can be applied even in smaller screens. Here we demonstrate the efficacy of both methods at removing the copy number effect and rescuing hits from some of the amplified regions. We estimate a 70-80% decrease of false positive hits with either method in regions of high copy number compared to no correction.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , DNA Copy Number Variations/genetics , Neoplasms/genetics , Artifacts , Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Datasets as Topic , False Positive Reactions , Genomics , Humans , Models, Theoretical , Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
13.
Proc Natl Acad Sci U S A ; 114(12): 3151-3156, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28265066

ABSTRACT

Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf-/- mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy.


Subject(s)
DNA Transposable Elements , Drug Resistance, Neoplasm/genetics , Genetic Vectors/genetics , Mutagenesis, Insertional , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Suppressor Protein p53/genetics , Allografts , Animals , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Genetic Drift , Humans , Kaplan-Meier Estimate , Mice , Mice, Knockout , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/mortality , Neoplasms/pathology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism
14.
Cancer Discov ; 6(8): 900-13, 2016 08.
Article in English | MEDLINE | ID: mdl-27260157

ABSTRACT

UNLABELLED: CRISPR/Cas9 has emerged as a powerful new tool to systematically probe gene function. We compared the performance of CRISPR to RNAi-based loss-of-function screens for the identification of cancer dependencies across multiple cancer cell lines. CRISPR dropout screens consistently identified more lethal genes than RNAi, implying that the identification of many cellular dependencies may require full gene inactivation. However, in two aneuploid cancer models, we found that all genes within highly amplified regions, including nonexpressed genes, scored as lethal by CRISPR, revealing an unanticipated class of false-positive hits. In addition, using a CRISPR tiling screen, we found that sgRNAs targeting essential domains generate the strongest lethality phenotypes and thus provide a strategy to rapidly define the protein domains required for cancer dependence. Collectively, these findings not only demonstrate the utility of CRISPR screens in the identification of cancer-essential genes, but also reveal the need to carefully control for false-positive results in chromosomally unstable cancer lines. SIGNIFICANCE: We show in this study that CRISPR-based screens have a significantly lower false-negative rate compared with RNAi-based screens, but have specific liabilities particularly in the interrogation of regions of genome amplification. Therefore, this study provides critical insights for applying CRISPR-based screens toward the systematic identification of new cancer targets. Cancer Discov; 6(8); 900-13. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Aguirre et al., p. 914This article is highlighted in the In This Issue feature, p. 803.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Amplification , Genome, Human , Genomics , Neoplasms/genetics , Cell Line, Tumor , Genetic Association Studies , Genomics/methods , Genomics/standards , High-Throughput Screening Assays , Humans , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA, Guide, Kinetoplastida/genetics , RNA, Small Interfering/genetics , Reproducibility of Results
15.
Cancer Res ; 76(2): 390-402, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26577700

ABSTRACT

The introduction of MAPK pathway inhibitors paved the road for significant advancements in the treatment of BRAF-mutant (BRAF(MUT)) melanoma. However, even BRAF/MEK inhibitor combination therapy has failed to offer a curative treatment option, most likely because these pathways constitute a codependent signaling network. Concomitant PTEN loss of function (PTEN(LOF)) occurs in approximately 40% of BRAF(MUT) melanomas. In this study, we sought to identify the nodes of the PTEN/PI3K pathway that would be amenable to combined therapy with MAPK pathway inhibitors for the treatment of PTEN(LOF)/BRAF(MUT) melanoma. Large-scale compound sensitivity profiling revealed that PTEN(LOF) melanoma cell lines were sensitive to PI3Kß inhibitors, albeit only partially. An unbiased shRNA screen (7,500 genes and 20 shRNAs/genes) across 11 cell lines in the presence of a PI3Kß inhibitor identified an adaptive response involving the IGF1R-PI3Kα axis. Combined inhibition of the MAPK pathway, PI3Kß, and PI3Kα or insulin-like growth factor receptor 1 (IGF1R) synergistically sustained pathway blockade, induced apoptosis, and inhibited tumor growth in PTEN(LOF)/BRAF(MUT) melanoma models. Notably, combined treatment with the IGF1R inhibitor, but not the PI3Kα inhibitor, failed to elevate glucose or insulin signaling. Taken together, our findings provide a strong rationale for testing combinations of panPI3K, PI3Kß + IGF1R, and MAPK pathway inhibitors in PTEN(LOF)/BRAF(MUT) melanoma patients to achieve maximal response.


Subject(s)
MAP Kinase Signaling System/genetics , Melanoma/genetics , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins B-raf/genetics , Receptor, IGF Type 1/metabolism , Apoptosis , Cell Death , Cell Proliferation , Humans , Melanoma/pathology , Proteomics
16.
Nat Med ; 21(11): 1318-25, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26479923

ABSTRACT

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.


Subject(s)
Antineoplastic Agents/therapeutic use , High-Throughput Screening Assays/methods , Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Animals , Breast Neoplasms/drug therapy , Carcinoma/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Colorectal Neoplasms/drug therapy , Disease Models, Animal , Female , Humans , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Mice , Neoplasm Transplantation , Pancreatic Neoplasms/drug therapy , Reproducibility of Results , Skin Neoplasms/drug therapy , Stomach Neoplasms/drug therapy
17.
Mol Cancer Ther ; 13(5): 1117-29, 2014 May.
Article in English | MEDLINE | ID: mdl-24608574

ABSTRACT

Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors. Novel targeted therapeutics such as NVP-BYL719, designed to modulate aberrant functions elicited by cancer-specific genetic alterations upon which the disease depends, require well-defined patient stratification strategies in order to maximize their therapeutic impact and benefit for the patients. Here, we also describe the application of the Cancer Cell Line Encyclopedia as a preclinical platform to refine the patient stratification strategy for NVP-BYL719 and found that PIK3CA mutation was the foremost positive predictor of sensitivity while revealing additional positive and negative associations such as PIK3CA amplification and PTEN mutation, respectively. These patient selection determinants are being assayed in the ongoing NVP-BYL719 clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Thiazoles/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/genetics , Female , Humans , Inhibitory Concentration 50 , Mice , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Rats , Thiazoles/pharmacokinetics , Xenograft Model Antitumor Assays
18.
Clin Cancer Res ; 20(7): 1834-45, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24474669

ABSTRACT

PURPOSE: PIM kinases have been shown to act as oncogenes in mice, with each family member being able to drive progression of hematologic cancers. Consistent with this, we found that PIMs are highly expressed in human hematologic cancers and show that each isoform has a distinct expression pattern among disease subtypes. This suggests that inhibitors of all three PIMs would be effective in treating multiple hematologic malignancies. EXPERIMENTAL DESIGN: Pan-PIM inhibitors have proven difficult to develop because PIM2 has a low Km for ATP and, thus, requires a very potent inhibitor to effectively block the kinase activity at the ATP levels in cells. We developed a potent and specific pan-PIM inhibitor, LGB321, which is active on PIM2 in the cellular context. RESULTS: LGB321 is active on PIM2-dependent multiple myeloma cell lines, where it inhibits proliferation, mTOR-C1 signaling and phosphorylation of BAD. Broad cancer cell line profiling of LGB321 demonstrates limited activity in cell lines derived from solid tumors. In contrast, significant activity in cell lines derived from diverse hematological lineages was observed, including acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), multiple myeloma and non-Hodgkin lymphoma (NHL). Furthermore, we demonstrate LGB321 activity in the KG-1 AML xenograft model, in which modulation of pharmacodynamics markers is predictive of efficacy. Finally, we demonstrate that LGB321 synergizes with cytarabine in this model. CONCLUSIONS: We have developed a potent and selective pan-PIM inhibitor with single-agent antiproliferative activity and show that it synergizes with cytarabine in an AML xenograft model. Our results strongly support the development of Pan-PIM inhibitors to treat hematologic malignancies.


Subject(s)
Hematologic Neoplasms/therapy , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins/genetics , Animals , Cell Line, Tumor , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Humans , Mice , Phosphorylation , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , Xenograft Model Antitumor Assays
19.
Nat Med ; 20(1): 87-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24362935

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive malignancy that is characterized by poor prognosis. Large-scale pharmacological profiling across more than 100 hematological cell line models identified a subset of MCL cell lines that are highly sensitive to the B cell receptor (BCR) signaling inhibitors ibrutinib and sotrastaurin. Sensitive MCL models exhibited chronic activation of the BCR-driven classical nuclear factor-κB (NF-κB) pathway, whereas insensitive cell lines displayed activation of the alternative NF-κB pathway. Transcriptome sequencing revealed genetic lesions in alternative NF-κB pathway signaling components in ibrutinib-insensitive cell lines, and sequencing of 165 samples from patients with MCL identified recurrent mutations in TRAF2 or BIRC3 in 15% of these individuals. Although they are associated with insensitivity to ibrutinib, lesions in the alternative NF-κB pathway conferred dependence on the protein kinase NIK (also called mitogen-activated protein 3 kinase 14 or MAP3K14) both in vitro and in vivo. Thus, NIK is a new therapeutic target for MCL treatment, particularly for lymphomas that are refractory to BCR pathway inhibitors. Our findings reveal a pattern of mutually exclusive activation of the BCR-NF-κB or NIK-NF-κB pathways in MCL and provide critical insights into patient stratification strategies for NF-κB pathway-targeted agents.


Subject(s)
Lymphoma, Mantle-Cell/drug therapy , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Pyrroles/pharmacology , Quinazolines/pharmacology , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects , Adenine/analogs & derivatives , Baculoviral IAP Repeat-Containing 3 Protein , Base Sequence , Blotting, Western , CARD Signaling Adaptor Proteins/metabolism , Cell Line , Cell Survival , DNA Primers/genetics , Guanylate Cyclase/metabolism , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Luminescent Measurements , Microarray Analysis , Molecular Sequence Data , Piperidines , Protein Serine-Threonine Kinases/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RNA Interference , Real-Time Polymerase Chain Reaction , Receptors, Antigen, B-Cell/antagonists & inhibitors , Sequence Analysis, RNA , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 3/metabolism , Trypan Blue , Ubiquitin-Protein Ligases , NF-kappaB-Inducing Kinase
20.
PLoS One ; 8(11): e80741, 2013.
Article in English | MEDLINE | ID: mdl-24260468

ABSTRACT

Soft tissue sarcomas (STS) are rare, complex tumors with a poor prognosis. The identification of new prognostic biomarkers is needed to improve patient management. Our aim was to determine the methylation status of the 118 CpG sites in the PLAGL1 tumor-suppressor gene P1 CpG island promoter and study the potential prognostic impact of PLAGL1 promoter methylation CpG sites in STS. Training cohorts constituted of 28 undifferentiated sarcomas (US) and 35 leiomyosarcomas (LMS) were studied. PLAGL1 mRNA expression was investigated by microarray analysis and validated by RT-qPCR. Pyrosequencing was used to analyze quantitative methylation of the PLAGL1 promoter. Associations between global promoter or specific CpG site methylation and mRNA expression were evaluated using Pearson's product moment correlation coefficient. Cox univariate and multivariate proportional hazard models were used to assess the predictive power of CpG site methylation status. Sixteen CpG sites associated with PLAGL1 mRNA expression were identified in US and 6 in LMS. Statistical analyses revealed an association between CpG107 methylation status and both overall and metastasis-free survival in US, which was confirmed in a validation cohort of 37 US. The exhaustive study of P1 PLAGL1 promoter methylation identified a specific CpG site methylation correlated with mRNA expression, which was predictive for both metastasis-free and overall survival and may constitute the first US-specific biomarker. Such a biomarker may be relevant for identifying patients likely to derive greater benefit from treatment.


Subject(s)
Cell Cycle Proteins/genetics , CpG Islands , DNA Methylation , Sarcoma/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Female , Gene Expression Regulation, Neoplastic , Humans , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Male , Middle Aged , Neoplasm Grading , Prognosis , Promoter Regions, Genetic , RNA, Messenger/genetics , Sarcoma/mortality , Sarcoma/pathology , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...