Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 416(2): 145-51, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21669176

ABSTRACT

Developments in microarray technology promise to lead to great advancements in the biomedical and biological field. However, implementation of these analytical tools often relies on signal amplification strategies that are essential to reach the sensitivity levels required for a variety of biological applications. This is true especially for reverse phase arrays where a complex biological sample is directly immobilized on the chip. We present a simple and generic method for signal amplification based on the use of antibody-tagged fluorescent vesicles as labels for signal generation. To assess the gain in assay sensitivity, we performed a model assay for the detection of rabbit immunoglobulin G (IgG) and compared the limit of detection (LOD) of the vesicle assay with the LOD of a conventional assay performed with fluorescent reporter molecules. We evaluated the improvements for two fluorescence-based transduction setups: a high-sensitivity microarray reader (ZeptoREADER) and a conventional confocal scanner. In all cases, our strategy led to an increase in sensitivity. However, gain in sensitivity widely depended on the type of illumination; whereas an approximately 2-fold increase in sensitivity was observed for readout based on evanescent field illumination, the contribution was as high as more than 200-fold for confocal scanning.


Subject(s)
Fluorescent Dyes/chemistry , Lipid Bilayers/chemistry , Protein Array Analysis/methods , Animals , Antibodies/immunology , Immunoassay/methods , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Microscopy, Confocal , Rabbits , Rhodamines/chemistry
2.
Methods Mol Biol ; 723: 37-55, 2011.
Article in English | MEDLINE | ID: mdl-21370058

ABSTRACT

Infection of cells and tissues by pathogenic microorganisms often involves severe reprogramming of host cell signaling. Typically, invasive microorganisms manipulate host cellular pathways seeking advantage for replication and survival within the host, or to evade the immune response. Understanding such subversion of the host cell by intracellular pathogens at a molecular level is the key to possible preventive and therapeutic interventions on infectious diseases. Reverse Protein Arrays (RPAs) have been exploited in other fields, especially in molecular oncology. However, this technology has not been applied yet to the study of infectious diseases. Coupling classic in vitro infection techniques used by cellular microbiologists to proteomic approaches such as RPA analysis should provide a wealth of information about how host cell pathways are manipulated by pathogens. The increasing availability of antibodies specific for phosphorylated epitopes in signaling proteins allows monitoring global changes in phosphorylation through the infection process by utilizing RPA analyses. In our lab, we have shown the potential of RPA technology in this field by devising a microarray consisting of lysates from cell cultures infected by Salmonella typhimurium. The protocols used are described here.


Subject(s)
Host-Pathogen Interactions , Protein Array Analysis/methods , Analytic Sample Preparation Methods , Animals , Antibodies/immunology , Cattle , Cell Extracts , HeLa Cells , Humans , Immunoassay , Phosphorylation , Protein Array Analysis/standards , Proteins/immunology , Proteins/metabolism , Quality Control , Reproducibility of Results , Salmonella typhimurium/physiology
3.
Biomacromolecules ; 11(12): 3467-79, 2010 Dec 13.
Article in English | MEDLINE | ID: mdl-21090572

ABSTRACT

Polymer brushes represent an interesting platform for the development of high-capacity protein binding surfaces. Whereas the protein binding properties of polymer brushes have been investigated before, this manuscript evaluates the feasibility of poly(glycidyl methacrylate) (PGMA) and PGMA-co-poly(2-(diethylamino)ethyl methacrylate) (PGMA-co-PDEAEMA) (co)polymer brushes grown via surface-initiated atom transfer radical polymerization (SI-ATRP) as protein reactive substrates in a commercially available microarray system using tantalum-pentoxide-coated optical waveguide-based chips. The performance of the polymer-brush-based protein microarray chips is assessed using commercially available dodecylphosphate (DDP)-modified chips as the benchmark. In contrast to the 2D planar, DDP-coated chips, the polymer-brush-covered chips represent a 3D sampling volume. This was reflected in the results of protein immobilization studies, which indicated that the polymer-brush-based coatings had a higher protein binding capacity as compared to the reference substrates. The protein binding capacity of the polymer-brush-based coatings was found to increase with increasing brush thickness and could also be enhanced by copolymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA), which catalyzes epoxide ring-opening of the glycidyl methacrylate (GMA) units. The performance of the polymer-brush-based microarray chips was evaluated in two proof-of-concept microarray experiments, which involved the detection of biotin-streptavidin binding as well as a model TNFα reverse assay. These experiments revealed that the use of polymer-brush-modified microarray chips resulted not only in the highest absolute fluorescence readouts, reflecting the 3D nature and enhanced sampling volume provided by the brush coating, but also in significantly enhanced signal-to-noise ratios. These characteristics make the proposed polymer brushes an attractive alternative to commercially available, 2D microarray surface coatings.


Subject(s)
Polymers/chemistry , Protein Array Analysis , Bacterial Proteins , Biotin/analogs & derivatives , Epoxy Compounds , Methacrylates , Nylons , Polymerization , Tumor Necrosis Factor-alpha
4.
Anal Chem ; 77(18): 5831-8, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16159112

ABSTRACT

DNA microarrays have become a powerful tool for expression profiling and other genomics applications. A critical factor for their sensitivity is the interfacial coating between the chip substrate and the bound DNA. Such a coating has to embrace the divergent requirements of tightly binding the capture probe DNA during the spotting process and of minimizing the nonspecific binding of target DNA during the hybridization assay. To fulfill these conditions, most coatings require a passivation step. Here we demonstrate how the chain density of a graft copolymer with a polycationic backbone, poly(l-lysine)-graft-poly(ethylene glycol), can be tuned such that the binding capacity during capture probe deposition is maximized while the nonspecific binding during hybridization assays is kept to a minimum, thus alleviating the requirement for a separate passivation procedure. Evidence for the superior performance of such coatings in terms of signal-to-noise ratio and spot quality is presented using an evanescent field-based fluorescent sensing technique (the ZeptoREADER). The surface architecture is further characterized using optical waveguide lightmode spectroscopy and time-of-flight secondary ion mass spectrometry. Finally, in a model assay, we demonstrate that expression changes can be detected from 1 microg of total mRNA sample material with a limit of detectable differential expression of +/-1.5.


Subject(s)
DNA/chemistry , Oligonucleotide Array Sequence Analysis/methods , Polyethylene Glycols/chemistry , Mass Spectrometry , Microchip Analytical Procedures , Molecular Structure , Oligonucleotides/chemistry , Osmolar Concentration , Polylysine/chemistry , Static Electricity , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...