Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 72018 07 31.
Article in English | MEDLINE | ID: mdl-30060804

ABSTRACT

Signaling filopodia, termed cytonemes, are dynamic actin-based membrane structures that regulate the exchange of signaling molecules and their receptors within tissues. However, how cytoneme formation is regulated remains unclear. Here, we show that Wnt/planar cell polarity (PCP) autocrine signaling controls the emergence of cytonemes, and that cytonemes subsequently control paracrine Wnt/ß-catenin signal activation. Upon binding of the Wnt family member Wnt8a, the receptor tyrosine kinase Ror2 becomes activated. Ror2/PCP signaling leads to the induction of cytonemes, which mediate the transport of Wnt8a to neighboring cells. In the Wnt-receiving cells, Wnt8a on cytonemes triggers Wnt/ß-catenin-dependent gene transcription and proliferation. We show that cytoneme-based Wnt transport operates in diverse processes, including zebrafish development, murine intestinal crypt and human cancer organoids, demonstrating that Wnt transport by cytonemes and its control via the Ror2 pathway is highly conserved in vertebrates.


Subject(s)
Cytoskeletal Proteins/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Wnt Proteins/genetics , Zebrafish Proteins/genetics , beta Catenin/genetics , Animals , Autocrine Communication/genetics , Cell Polarity/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Mice , Paracrine Communication/genetics , Pseudopodia/genetics , Pseudopodia/metabolism , Wnt Signaling Pathway/genetics , Zebrafish/genetics , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...