Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 61(18): 8136-8154, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30048589

ABSTRACT

The orphan receptor GPR17 may be a novel drug target for inflammatory diseases. 3-(2-Carboxyethyl)-4,6-dichloro-1 H-indole-2-carboxylic acid (MDL29,951, 1) was previously identified as a moderately potent GPR17 agonist. In the present study, we investigated the structure-activity relationships (SARs) of 1. Substitution of the indole 1-, 5-, or 7-position was detrimental. Only small substituents were tolerated in the 4-position while the 6-position accommodated large lipophilic residues. Among the most potent compounds were 3-(2-carboxyethyl)-1 H-indole-2-carboxylic acid derivatives containing the following substituents: 6-phenoxy (26, PSB-1737, EC50 270 nM), 4-fluoro-6-bromo (33, PSB-18422, EC50 27.9 nM), 4-fluoro-6-iodo (35, PSB-18484, EC50 32.1 nM), and 4-chloro-6-hexyloxy (43, PSB-1767, EC50 67.0 nM). (3-(2-Carboxyethyl)-6-hexyloxy-1 H-indole-2-carboxylic acid (39, PSB-17183, EC50 115 nM) behaved as a partial agonist. Selected potent compounds tested at human P2Y receptor subtypes showed high selectivity for GPR17. Docking into a homology model of the human GPR17 and molecular dynamic simulation studies rationalized the observed SARs.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Astrocytoma/drug therapy , Indoles/chemistry , Receptors, G-Protein-Coupled/agonists , Animals , Astrocytoma/metabolism , Astrocytoma/pathology , Calcium/metabolism , Humans , Models, Molecular , Molecular Structure , Protein Conformation , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...