Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS Comput Biol ; 19(10): e1011379, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871126

ABSTRACT

Most computational methods that infer somatic copy number alterations (SCNAs) from bulk sequencing of DNA analyse tumour samples individually. However, the sequencing of multiple tumour samples from a patient's disease is an increasingly common practice. We introduce Refphase, an algorithm that leverages this multi-sampling approach to infer haplotype-specific copy numbers through multi-sample phasing. We demonstrate Refphase's ability to infer haplotype-specific SCNAs and characterise their intra-tumour heterogeneity, to uncover previously undetected allelic imbalance in low purity samples, and to identify parallel evolution in the context of whole genome doubling in a pan-cancer cohort of 336 samples from 99 tumours.


Subject(s)
DNA Copy Number Variations , Neoplasms , Humans , DNA Copy Number Variations/genetics , Haplotypes/genetics , Neoplasms/genetics , Neoplasms/pathology , Algorithms
3.
Bioinformatics ; 39(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36825830

ABSTRACT

MOTIVATION: Simulations of cancer evolution are highly useful to study the effects of selection and mutation rates on cellular fitness. However, most methods are either lattice-based and cannot simulate realistically sized tumours, or they omit spatial constraints and lack the clonal dynamics of real-world tumours. RESULTS: Stochastic model of intra-tumour heterogeneity (SMITH) is an efficient and explainable model of cancer evolution that combines a branching process with a new confinement mechanism limiting clonal growth based on the size of the individual clones as well as the overall tumour population. We demonstrate how confinement is sufficient to induce the rich clonal dynamics observed in spatial models and cancer samples across tumour types, while allowing for a clear geometric interpretation and simulation of 1 billion cells within a few minutes on a desktop PC. AVAILABILITY AND IMPLEMENTATION: SMITH is implemented in C# and freely available at https://bitbucket.org/schwarzlab/smith. For visualizations, we provide the accompanying Python package PyFish at https://bitbucket.org/schwarzlab/pyfish. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neoplasms , Software , Humans , Computer Simulation , Neoplasms/genetics
4.
Genome Biol ; 23(1): 241, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376909

ABSTRACT

Aneuploidy, chromosomal instability, somatic copy-number alterations, and whole-genome doubling (WGD) play key roles in cancer evolution and provide information for the complex task of phylogenetic inference. We present MEDICC2, a method for inferring evolutionary trees and WGD using haplotype-specific somatic copy-number alterations from single-cell or bulk data. MEDICC2 eschews simplifications such as the infinite sites assumption, allowing multiple mutations and parallel evolution, and does not treat adjacent loci as independent, allowing overlapping copy-number events. Using simulations and multiple data types from 2780 tumors, we use MEDICC2 to demonstrate accurate inference of phylogenies, clonal and subclonal WGD, and ancestral copy-number states.


Subject(s)
Neoplasms , Humans , Phylogeny , Neoplasms/genetics , Neoplasms/pathology , DNA Copy Number Variations , Exome , Genome, Human
5.
PLoS Comput Biol ; 16(7): e1007801, 2020 07.
Article in English | MEDLINE | ID: mdl-32628657

ABSTRACT

Recent experiments with super-resolution live cell microscopy revealed that nonmuscle myosin II minifilaments are much more dynamic than formerly appreciated, often showing plastic processes such as splitting, concatenation and stacking. Here we combine sequence information, electrostatics and elasticity theory to demonstrate that the parallel staggers at 14.3, 43.2 and 72 nm have a strong tendency to splay their heads away from the minifilament, thus potentially initiating the diverse processes seen in live cells. In contrast, the straight antiparallel stagger with an overlap of 43 nm is very stable and likely initiates minifilament nucleation. Using stochastic dynamics in a newly defined energy landscape, we predict that the optimal parallel staggers between the myosin rods are obtained by a trial-and-error process in which two rods attach and re-attach at different staggers by rolling and zipping motion. The experimentally observed staggers emerge as the configurations with the largest contact times. We find that contact times increase from isoforms C to B to A, that A-B-heterodimers are surprisingly stable and that myosin 18A should incorporate into mixed filaments with a small stagger. Our findings suggest that nonmuscle myosin II minifilaments in the cell are first formed by isoform A and then convert to mixed A-B-filaments, as observed experimentally.


Subject(s)
Myosin Type II , Static Electricity , Computational Biology , Humans , Models, Molecular , Myosin Type II/chemistry , Myosin Type II/metabolism , Myosin Type II/ultrastructure , Protein Conformation , Protein Isoforms
6.
Front Mol Biosci ; 6: 36, 2019.
Article in English | MEDLINE | ID: mdl-31179286

ABSTRACT

Drug-target residence times can impact drug efficacy and safety, and are therefore increasingly being considered during lead optimization. For this purpose, computational methods to predict residence times, τ, for drug-like compounds and to derive structure-kinetic relationships are desirable. A challenge for approaches based on molecular dynamics (MD) simulation is the fact that drug residence times are typically orders of magnitude longer than computationally feasible simulation times. Therefore, enhanced sampling methods are required. We recently reported one such approach: the τRAMD procedure for estimating relative residence times by performing a large number of random acceleration MD (RAMD) simulations in which ligand dissociation occurs in times of about a nanosecond due to the application of an additional randomly oriented force to the ligand. The length of the RAMD simulations is used to deduce τ. The RAMD simulations also provide information on ligand egress pathways and dissociation mechanisms. Here, we describe a machine learning approach to systematically analyze protein-ligand binding contacts in the RAMD trajectories in order to derive regression models for estimating τ and to decipher the molecular features leading to longer τ values. We demonstrate that the regression models built on the protein-ligand interaction fingerprints of the dissociation trajectories result in robust estimates of τ for a set of 94 drug-like inhibitors of heat shock protein 90 (HSP90), even for the compounds for which the length of the RAMD trajectories does not provide a good estimation of τ. Thus, we find that machine learning helps to overcome inaccuracies in the modeling of protein-ligand complexes due to incomplete sampling or force field deficiencies. Moreover, the approach facilitates the identification of features important for residence time. In particular, we observed that interactions of the ligand with the sidechain of F138, which is located on the border between the ATP binding pocket and a hydrophobic transient sub-pocket, play a key role in slowing compound dissociation. We expect that the combination of the τRAMD simulation procedure with machine learning analysis will be generally applicable as an aid to target-based lead optimization.

SELECTION OF CITATIONS
SEARCH DETAIL
...