Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 40(8): 1475-1487, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38727930

ABSTRACT

Analyzing pharmaceutical products is a quality control requirement in a production facility. This study presents a CuO electrode-based reusable non-enzymatic sensor as an alternative method for rapid analysis of glucose levels in glucose infusions. CuO is extensively employed as an electrode material in non-enzymatic glucose sensors. Conventionally, these electrodes are fabricated using chemical synthesis of CuO followed by immobilization to the electrode substrate. In contrast, here, Cu metal was mechanically modified to create a grooved surface, followed by electrochemical anodization and subsequent annealing process to grow a seamless CuO layer in situ with enhanced catalytic activity. The morphology of the electrodes was characterized using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The direct electrocatalytic activity of the developed CuO-modified electrode towards glucose oxidation in alkaline media was investigated by cyclic voltammetry in detail. The CuO-modified electrode commenced the oxidation process around 0.10 V vs. Ag pseudo-reference electrode, demonstrating a significant reduction in the overvoltage for glucose oxidation compared to the bare Cu electrode. The sensor is capable of detecting glucose at low oxidation potentials such as 0.2 V with a sensitivity value of 0.37 µA ppm-1, a wide linear range (80-2300 ppm), limit of quantification (LOQ) of 1 ppm, greater repeatability, 1% precision, 3% bias, a short response time (80 s), good reproducibility and excellent reusability (196 consecutive attempts). The enhanced performance and cost-effectiveness make this sensor a promising alternative method for product analysis in glucose injection solutions.


Subject(s)
Copper , Electrodes , Glucose , Copper/chemistry , Glucose/analysis , Glucose/chemistry , Electrochemical Techniques , Electrochemistry , Oxidation-Reduction , Biosensing Techniques , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis
2.
RSC Adv ; 13(10): 6396-6411, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36845598

ABSTRACT

This work presents a highly sensitive, economical, flexible, and disposable humidity sensor developed with a facile fabrication process. The sensor was fabricated on cellulose paper using polyemaraldine salt, a form of polyaniline (PAni), via the drop coating method. A three-electrode configuration was employed to ensure high accuracy and precision. The PAni film was characterized using various techniques including ultraviolet-visible (UV-vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The humidity sensing properties were evaluated through electrochemical impedance spectroscopy (EIS) in a controlled environment. The sensor exhibits a linear response with R 2 = 0.990 for impedance over a wide range of (0%-97%) relative humidity (RH). Further, it displayed consistent responsiveness, a sensitivity of 1.1701 Ω/%RH, acceptable response (≤220 s)/recovery (≤150 s), excellent repeatability, low hysteresis (≤2.1%) and long-term stability at room temperature. The temperature dependence of the sensing material was also studied. Due to its unique features, cellulose paper was found to be an effective alternative to conventional sensor substrates according to several factors including compatibility with the PAni layer, flexibility and low cost. These unique characteristics make this sensor a promising option for use in specific healthcare monitoring, research activities, and industrial settings as a flexible and disposable humidity measurement tool.

3.
Chemosphere ; 239: 124788, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31521935

ABSTRACT

Digestion of biomass derived carbonaceous materials such as biochar (BC) can be challenging due to their high chemical recalcitrance and vast variations in composition. Reports on the development of specific sample digestion methods for such materials remain inadequate and thus require considerable attention. Nine different carbonaceous materials; slow-pyrolyzed tea-waste and king coconut BC produced at 300 °C, 500 °C and 700 °C, sludge waste BC produced at 700 °C, wet fast-pyrolyzed Douglas-Fir BC and steam activated coconut shell BC have been tested to evaluate a relatively fast and convenient open-vessel digestion method using seven digestion reagents including nitric acid (NA), fuming nitric acid (FNA), sulfuric acid (SA), NA/SA, FNA/SA, NA/H2O2 and SA/H2O2 mixtures. From the tested digestion reagents, SA/H2O2 mixture dissolved low temperature produced BC (LTBC) within 2 h with occasional shaking and no external heating. Except peroxide mixtures, the other reagents were used to evaluate microwave digestion (MWD) efficiency. Nitric acid mixture was capable of only completely digesting LTBC in the MWD procedure whereas FNA, NA/SA and FNA/SA mixtures resulted in the successful dissolution of all tested carbonaceous materials. Amongst them, FNA provided the least matrix effect in the quantification of the four metals tested using flame atomic absorption spectrophotometry. Tested recoveries for FNA were satisfactory as well. It was concluded that FNA is a preferable reagent for microwave digestion of BC.


Subject(s)
Charcoal/chemistry , Waste Products , Cocos , Dairying , Hydrogen Peroxide , Metals/analysis , Microwaves , Nitric Acid/chemistry , Pyrolysis , Sewage , Spectrophotometry, Atomic/methods , Sulfuric Acids/chemistry
4.
RSC Adv ; 9(31): 17612-17622, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-35520596

ABSTRACT

Tea-waste is an abundant feedstock for producing biochar (BC) which is considered to be a cost effective carbonaceous adsorbent useful for water remediation and soil amendment purposes. In the present study, tea-waste BC (TWBC) produced at three different temperatures were subjected to nitric, sulfuric and hydrochloric acid modifications (abbreviated as NM, SM and HM respectively). Characteristics of the raw and modified BC such as ultimate and proximate analyses, surface morphology, surface acidity and functionality, point of zero charge, cation exchange capacity (CEC) and thermal stability were compared to evaluate the influence of pyrolysis temperature and of modifications incorporated. The amount of carboxylic and phenolic surface functionalities on TWBC was seen to decrease by 93.44% and 81.06% respectively when the pyrolysis temperature was increased from 300 to 700 °C. Additionally, the yield of BC was seen to decrease by 46% upon the latter temperature increment. The elemental analysis results provided justification for high-temperature BC being more hydrophobic as was observed by the 61% increase in H/C ratio which is an indication of augmented aromatization. The CEC was the highest for the low-temperature BC and was seen to further increase by NM which is attributed to the 81.89% increase in carboxylic functionalities. The surface area was seen to significantly increase for BC700 upon NM (∼27 times). The SM led to pore wall destruction which was observed in scanning electron microscopy images. Findings would enable the rational use of these particular modifications in relevant remediation and soil amendment applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...