Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(18): 6952-6961, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33929830

ABSTRACT

We report a new fast ion-conducting lithium thioborate halide, Li6B7S13I, that crystallizes in either a cubic or tetragonal thioboracite structure, which is unprecedented in boron-sulfur chemistry. The cubic phase exhibits a perovskite topology and an argyrodite-like lithium substructure that leads to superionic conduction with a theoretical Li-ion conductivity of 5.2 mS cm-1 calculated from ab initio molecular dynamics (AIMD). Combined single-crystal X-ray diffraction, neutron powder diffraction, and AIMD simulations elucidate the Li+-ion conduction pathways through 3D intra- and intercage connections and Li-ion site disorder, which are all essential for high lithium mobility. Furthermore, we demonstrate that Li+ ordering in the tetragonal polymorph impedes lithium-ion conduction, thus highlighting the importance of the lithium substructure and lattice symmetry in dictating transport properties.

2.
Angew Chem Int Ed Engl ; 60(13): 6975-6980, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33245819

ABSTRACT

Lithium thioborates are promising fast Li-ion conducting materials, with similar properties to their lithium thiophosphate counterparts that have enabled the development of solid-state Li-ion batteries. By comparison, thioborates have scarcely been developed, however, offering new space for materials discovery. Here we report a new class of lithium thioborate halides that adopt a so-called supertetrahedral adamantanoid structure that houses mobile lithium ions and halide anions within interconnected 3D structural channels. Investigation of the structure using single-crystal XRD, neutron powder diffraction, and neutron PDF reveals significant lithium and halide anion disorder. The phases are non-stoichiometric, adopting slightly varying halide contents within the materials. These new superadamantanoid materials exhibit high ionic conductivities up to 1.4 mS cm-1 , which can be effectively tuned by the polarizability of the halide anion within the channels.

SELECTION OF CITATIONS
SEARCH DETAIL
...