Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pain Res ; 17: 1029-1040, 2024.
Article in English | MEDLINE | ID: mdl-38505504

ABSTRACT

Vertebral compression fractures (VCFs) are common in osteoporotic patients, with a frequency projected to increase alongside a growing geriatric population. VCFs often result in debilitating back pain and decreased mobility. Cement augmentation, a minimally invasive surgical technique, is widely used to stabilize fractures and restore vertebral height. Acrylic-based cements and calcium phosphate cements are currently the two primary fill materials utilized for these procedures. Despite their effectiveness, acrylic bone cements and calcium phosphate cements have been associated with various intraoperative and postoperative incidents impacting VCF treatment. Over the past decade, discoveries in the field of biomedical engineering and material science have shown advancements toward addressing these limitations. This narrative review aims to assess the potential pitfalls and barriers of the various types of bone cements.

2.
Curr Drug Deliv ; 20(1): 75-88, 2022.
Article in English | MEDLINE | ID: mdl-35490322

ABSTRACT

BACKGROUND: Nowadays, biomedical research has been focusing on the design and development of new drug delivery systems that provide efficient drug targeting. The molecularly imprinted polymers (MIPs) have attracted wide interest and play an indispensable role as a drug carrier. Drug delivery systems based on MIPs have been frequently cited in the literature. They are cross-linked polymers that contain binding sites according to the complementary structure of the template molecules. They possess distinctive features of structure predictability and site recognition specificity. Versatile applications of MIPs include purification, biosensing, bioseparation, artificial antibodies, and drug delivery. An ideal MIPs should include features such as biocompatibility, biodegradability, and stability. OBJECTIVE: In this article, we elaborate on the historic growth, synthesis, and preparation of different MIPs and present an updated summary of recent advances in the development of new drug delivery systems which are based on this technique. Their potential to deliver drugs in a controlled and targeted manner will also be discussed. CONCLUSION: MIPs possess unique advantages, such as lower toxicity, fewer side effects, and good therapeutic potential. They offer administration of drugs by different routes, i.e., oral, ocular or transdermal. Despite several advantages, biomedical companies are hesitant to invest in MIPs based drug delivery systems due to the limited availability of chemical compounds.


Subject(s)
Drug Delivery Systems , Molecular Imprinting , Molecularly Imprinted Polymers , Drug Carriers/chemistry , Drug Carriers/standards , Drug Delivery Systems/methods , Drug Delivery Systems/trends , Molecularly Imprinted Polymers/chemistry , Molecularly Imprinted Polymers/standards
3.
Drug Chem Toxicol ; 45(5): 2255-2261, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34006163

ABSTRACT

Arsenic exposure causes immense health distress by increasing risk of cardiovascular abnormalities, diabetes mellitus, neurotoxicity, and nephrotoxicity. The present study explored the role of inducible nitric oxide synthase (iNOS) inhibitors against sodium arsenite-induced renal and hepatic dysfunction in rats. Female Sprague Dawley rats were subjected to arsenic toxicity by administering sodium arsenite (5 mg/kg/day, oral) for 4 weeks. The iNOS inhibitors, S-methylisothiourea (10 mg/kg, i.p.) and aminoguanidine (100 mg/kg, i.p.) were given one hour before sodium arsenite administration in rats for 4 weeks. Sodium arsenite led rise in serum creatinine, urea, uric acid, electrolytes (potassium, fractional excretion of sodium), microproteinuria, and decreased creatinine clearance (p < 0.001) indicated renal dysfunction in rats. Arsenic-intoxication resulted in significant oxidative stress in rat kidneys, which was measured in terms of increase in lipid peroxides, superoxide anion generation and decrease in reduced glutathione (p < 0.001) levels. A threefold increase in renal hydroxyproline level in arsenic intoxicated rats indicated fibrosis. Hematoxylin-eosin staining indicated tubular damage, whereas picrosirius red staining highlighted collagen deposition in rat kidneys. S-methylisothiourea and aminoguanidine improved renal function and attenuated arsenic led renal oxidative stress, fibrosis, and decreased the kidney injury score. Additionally, arsenite-intoxication resulted in significant rise in hepatic parameters (serum aspartate aminotransferase, alanine transferase, alkaline phosphatase, and bilirubin (p < 0.001) along with multi-fold increase in oxidative stress, fibrosis and liver injury score in rats, which was significantly (p < 0.001) attenuated by concurrent administration of iNOS inhibitors). Hence, it is concluded that iNOS inhibitors attenuate sodium arsenite-induced renal and hepatic dysfunction in rats.


Subject(s)
Arsenic , Arsenites , Animals , Arsenic/metabolism , Arsenites/metabolism , Arsenites/toxicity , Female , Fibrosis , Kidney/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II , Oxidative Stress , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sodium Compounds
4.
J Pharm Bioallied Sci ; 13(1): 129-135, 2021.
Article in English | MEDLINE | ID: mdl-34084059

ABSTRACT

INTRODUCTION: This study investigated the role of diallyl disulfide (DADS) against glycerol-induced nephrotoxicity in rats. Moreover, the role of peroxisome proliferator activated receptor-γ (PPAR-γ) in DADS-mediated renoprotection has been explored. MATERIALS AND METHODS: Male Wistar albino rats were challenged with glycerol (50% w/v, 8 mL/kg intramuscular) to induce nephrotoxicity. Kidney injury was quantified by measuring serum creatinine, creatinine clearance, urea, potassium, fractional excretion of sodium, and microproteinuria in rats. Renal oxidative stress was measured in terms of thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels. Hematoxylin-eosin (H&E) and periodic acid Schiff staining of renal samples was done to show histological changes. Glycerol-induced muscle damage was quantified by assaying creatine kinase (CK) levels in rat serum. RESULTS: Administration of glycerol resulted in muscle damage as reflected by significant rise in CK levels in rats. Glycerol intoxication led kidney damage was reflected by significant change in renal biochemical parameters, renal oxidative stress and histological changes in rat kidneys. Administration of DADS attenuated glycerol-induced renal damage. Notably, pretreatment with bisphenol A diglycidyl ether, a PPAR-γ antagonist, abolished DADS renoprotection in rats. CONCLUSION: We conclude that DADS affords protection against glycerol-induced renal damage in rats. Moreover, PPAR-γ plays a key role in DADS-mediated renoprotective effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...